Department of Physics, Tampere University of Technology, Tampere, Finland.
PLoS Comput Biol. 2010 Oct 28;6(10):e1000964. doi: 10.1371/journal.pcbi.1000964.
We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly.
我们通过粗粒化多微秒分子动力学模拟研究了球形高密度脂蛋白(HDL)颗粒的结构和动力学。我们模拟了没有载脂蛋白 A-I(apoA-I)的脂质滴和包含两个apoA-I 分子围绕脂质隔室的完整 HDL 颗粒。目前的模型是计算研究中第一个大小和脂质组成与人类血清 HDL 相匹配的模型。我们专注于脂质在 HDL 结构和动力学中的作用。特别关注脂质的组装以及脂质-蛋白相互作用对 HDL 性质的影响。我们发现脂质的性质与其在颗粒中的位置(核心、中间区域、表面)密切相关。与疏水性核心不同,中间和表面区域的特征是明显的构象脂质有序性。然而,不仅脂质的构象,而且脂质的动力学在不同的 HDL 区域也被发现明显不同,突出了在考虑 HDL 的功能化时动力学的重要性。载脂蛋白 A-I 的存在改变了靠近 HDL-水界面的脂质滴的结构,胆固醇和极性脂质观察到最明显的变化。对于胆固醇,观察到其在表面层和下方区域之间的缓慢运输。胆固醇与载脂蛋白 A-I 的疏水性残基之间的相互作用最强。我们的结果表明,不仅疏水性,而且分子的构象熵都是形成 HDL 结构的驱动力。这些结果提供了第一个具有和不具有 apoA-I 的 HDL 及其动力学的详细结构模型,并表明熵和详细相互作用之间的相互作用和竞争如何可用于通过自组装设计纳米颗粒和药物。