Suppr超能文献

G 蛋白偶联受体对钙通道和肾上腺儿茶酚胺释放的抑制作用。

Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.

机构信息

Departments of Anesthesiology, Pharmacology, and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA.

出版信息

Cell Mol Neurobiol. 2010 Nov;30(8):1201-8. doi: 10.1007/s10571-010-9596-7.

Abstract

Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.

摘要

肾上腺髓质细胞释放的儿茶酚胺和其他递质在“战斗或逃跑”反应中发挥着核心作用,并对心血管、内分泌、免疫和神经系统功能产生深远影响。因此,精确调节嗜铬细胞胞吐作用对于维持正常生理功能和对急性应激的适当反应至关重要。嗜铬细胞表达许多不同的 G 蛋白偶联受体(GPCRs),这些受体可以感知局部环境,并协调这种递质释放的精确控制。儿茶酚胺释放的主要触发因素是通过电压门控 Ca2+通道进入 Ca2+,因此这些通道受到 GPCRs 的复杂调节是有意义的。特别是 G 蛋白 βγ 异二聚体(Gbc)结合并抑制 Ca2+通道。在这里,我回顾了 GPCR 抑制嗜铬细胞中 Ca2+通道的机制,以及细胞环境如何改变这种抑制作用。这与嗜铬细胞中观察到的 Ca2+内流和递质释放的强烈自分泌抑制有关。最近的数据表明,Gβγ 对胞吐机制的另一个抑制靶点,以及这如何微调神经内分泌分泌,也进行了讨论。

相似文献

1
Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.
Cell Mol Neurobiol. 2010 Nov;30(8):1201-8. doi: 10.1007/s10571-010-9596-7.
5
Gabapentin inhibits catecholamine release from adrenal chromaffin cells.
Anesthesiology. 2012 May;116(5):1013-24. doi: 10.1097/ALN.0b013e31825153ea.
6
GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens.
Int J Biochem Cell Biol. 2016 Aug;77(Pt B):213-9. doi: 10.1016/j.biocel.2016.02.003. Epub 2016 Feb 3.
9
Calcium signaling and exocytosis in adrenal chromaffin cells.
Physiol Rev. 2006 Oct;86(4):1093-131. doi: 10.1152/physrev.00039.2005.

引用本文的文献

1
Purinergic Receptor P2Y1 Modulates Catecholamine Signaling in Murine Mesenteric Lymph Nodes.
ACS Chem Neurosci. 2025 Mar 5;16(5):772-780. doi: 10.1021/acschemneuro.4c00435. Epub 2025 Feb 23.
2
RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting.
Biochem Pharmacol. 2023 Dec;218:115904. doi: 10.1016/j.bcp.2023.115904. Epub 2023 Nov 3.
3
Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes.
iScience. 2019 Nov 22;21:521-548. doi: 10.1016/j.isci.2019.10.052. Epub 2019 Oct 28.
4
GPCR regulation of secretion.
Pharmacol Ther. 2018 Dec;192:124-140. doi: 10.1016/j.pharmthera.2018.07.005. Epub 2018 Jul 26.
5
Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter.
Pharmacol Res. 2019 Feb;140:56-66. doi: 10.1016/j.phrs.2018.06.008. Epub 2018 Jun 9.
6
Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling.
Pflugers Arch. 2018 Jan;470(1):1-6. doi: 10.1007/s00424-017-2082-z. Epub 2017 Nov 6.
7
GABA receptor: a unique modulator of excitability, Ca signaling, and catecholamine release of rat chromaffin cells.
Pflugers Arch. 2018 Jan;470(1):67-77. doi: 10.1007/s00424-017-2080-1. Epub 2017 Nov 3.
8
Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes.
Biochemistry. 2017 Oct 10;56(40):5405-5416. doi: 10.1021/acs.biochem.7b00433. Epub 2017 Sep 21.
10
Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.
ACS Chem Neurosci. 2017 May 17;8(5):943-954. doi: 10.1021/acschemneuro.7b00026. Epub 2017 Apr 13.

本文引用的文献

2
Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis.
Cell. 2009 Oct 16;139(2):380-92. doi: 10.1016/j.cell.2009.09.025. Epub 2009 Oct 8.
3
Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.
Cell. 2009 Sep 4;138(5):935-46. doi: 10.1016/j.cell.2009.07.027. Epub 2009 Aug 27.
5
G-protein-coupled-receptor-mediated presynaptic inhibition in the cerebellum.
Trends Pharmacol Sci. 2009 Aug;30(8):421-30. doi: 10.1016/j.tips.2009.05.008. Epub 2009 Jul 24.
6
Conflicting views on the membrane fusion machinery and the fusion pore.
Annu Rev Cell Dev Biol. 2009;25:513-37. doi: 10.1146/annurev.cellbio.24.110707.175239.
8
Membrane fusion: grappling with SNARE and SM proteins.
Science. 2009 Jan 23;323(5913):474-7. doi: 10.1126/science.1161748.
9
Calcium channel regulation and presynaptic plasticity.
Neuron. 2008 Sep 25;59(6):882-901. doi: 10.1016/j.neuron.2008.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验