Suppr超能文献

序列数据库的起源与早期接受情况。

The origin and early reception of sequence databases.

作者信息

Hagen Joel B

机构信息

Department of Biology, Radford University, Radford, VA, USA.

出版信息

Methods Mol Biol. 2011;696:61-77. doi: 10.1007/978-1-60761-987-1_4.

Abstract

Emerging areas of scientific research never arise in a social or intellectual vacuum, but must establish themselves in relation to well-established disciplines. This necessity poses challenges for scientists who must not only create a new disciplinary identity, but must also defend their research from criticism and even condescension from other scientists. The early use of sequence databases provides an excellent case study for examining the challenges facing novel sciences. The need for sequence databases grew out of protein sequencing in biochemistry beginning in the late 1950s. The rapid increase in the number of sequences made databases an attractive resource, but protein biochemists often considered building, managing, and doing research with databases a "second-rate" science. Similarly, computational biologists who used databases and digital computers to study evolutionary phenomena faced criticism from more traditional evolutionary biologists. In retrospect, one can see this early computational biology as laying important foundations for the bioinformatics, molecular evolution, and molecular systematics of today. However, within the context of the 1960s, establishing a scientific identity posed serious challenges for Margaret Dayhoff, Walter Fitch, and Russell Doolittle and other computational biologists who used computers and databases to investigate evolutionary problems.

摘要

新兴的科研领域绝不会在社会或知识的真空中出现,而是必须在与成熟学科的关联中确立自身。这种必要性给科学家们带来了挑战,他们不仅要塑造一种新的学科身份,还必须捍卫自己的研究,使其免受其他科学家的批评甚至轻视。序列数据库的早期应用为审视新兴科学所面临的挑战提供了一个绝佳的案例研究。序列数据库的需求源于20世纪50年代末生物化学领域的蛋白质测序。序列数量的迅速增加使数据库成为一种有吸引力的资源,但蛋白质生物化学家常常认为构建、管理数据库以及利用数据库进行研究是“二流”科学。同样,使用数据库和数字计算机研究进化现象的计算生物学家也面临来自更传统的进化生物学家的批评。回顾过去,可以将早期的这种计算生物学视为当今生物信息学、分子进化和分子系统学的重要基础。然而,在20世纪60年代的背景下,为玛格丽特·戴霍夫、沃尔特·菲奇、拉塞尔·杜利特尔以及其他使用计算机和数据库研究进化问题的计算生物学家而言,确立科学身份带来了严峻的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验