Suppr超能文献

蛋白质组学数据实验设计、预处理及分析中的统计学方法。

Statistics in experimental design, preprocessing, and analysis of proteomics data.

作者信息

Jung Klaus

机构信息

Department of Medical Statistics, Georg-August-University Göttingen, Göttingen, Germany.

出版信息

Methods Mol Biol. 2011;696:259-72. doi: 10.1007/978-1-60761-987-1_16.

Abstract

High-throughput experiments in proteomics, such as 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), yield usually high-dimensional data sets of expression values for hundreds or thousands of proteins which are, however, observed on only a relatively small number of biological samples. Statistical methods for the planning and analysis of experiments are important to avoid false conclusions and to receive tenable results. In this chapter, the most frequent experimental designs for proteomics experiments are illustrated. In particular, focus is put on studies for the detection of differentially regulated proteins. Furthermore, issues of sample size planning, statistical analysis of expression levels as well as methods for data preprocessing are covered.

摘要

蛋白质组学中的高通量实验,如二维凝胶电泳(2-DE)和质谱分析(MS),通常会产生包含数百或数千种蛋白质表达值的高维数据集,然而这些数据仅在相对较少的生物样本上观测得到。用于实验规划和分析的统计方法对于避免错误结论和获得可靠结果至关重要。在本章中,将阐述蛋白质组学实验中最常见的实验设计。特别关注用于检测差异调节蛋白质的研究。此外,还涵盖了样本量规划、表达水平的统计分析以及数据预处理方法等问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验