Obert M, Pfeifer P, Sernetz M
Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Federal Republic of Germany.
J Bacteriol. 1990 Mar;172(3):1180-5. doi: 10.1128/jb.172.3.1180-1185.1990.
Fractal geometry has made important contributions to understanding the growth of inorganic systems in such processes as aggregation, cluster formation, and dendritic growth. In biology, fractal geometry was previously applied to describe, for instance, the branching system in the lung airways and the backbone structure of proteins as well as their surface irregularity. This investigation applies the fractal concept to the growth patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first example showing fractal aggregates in biological systems, with a cell as the smallest aggregating unit and the colony as an aggregate. We find that the global structure of sufficiently branched mycelia can be described by a fractal dimension, D, which increases during growth up to 1.5. D is therefore a new growth parameter. Two different box-counting methods (one applied to the whole mass of the mycelium and the other applied to the surface of the system) enable us to evaluate fractal dimensions for the aggregates in this analysis in the region of D = 1.3 to 2. Comparison of both box-counting methods shows that the mycelial structure changes during growth from a mass fractal to a surface fractal.
分形几何在理解诸如聚集、团簇形成和枝晶生长等过程中无机系统的生长方面做出了重要贡献。在生物学中,分形几何此前已被用于描述,例如,肺气道中的分支系统、蛋白质的主链结构及其表面不规则性。本研究将分形概念应用于两种微生物——灰色链霉菌和棉阿舒囊霉的生长模式。这是在生物系统中显示分形聚集体的首个实例,其中细胞是最小的聚集单元,菌落是一个聚集体。我们发现,充分分支的菌丝体的整体结构可用分形维数D来描述,D在生长过程中增加,直至达到1.5。因此,D是一个新的生长参数。两种不同的计盒方法(一种应用于菌丝体的整体,另一种应用于系统的表面)使我们能够在本分析中评估D = 1.3至2范围内聚集体的分形维数。两种计盒方法的比较表明,菌丝体结构在生长过程中从质量分形转变为表面分形。