Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany.
Inorg Chem. 2010 Dec 6;49(23):11018-29. doi: 10.1021/ic101574a. Epub 2010 Nov 10.
The dependence of the properties of mixed ligand Ni(II)(2)L(μ-O(2)CR) complexes (where L(2-) represents a 24-membered macrocyclic hexaamine-dithiophenolato ligand) on the basicity of the carboxylato coligands has been examined. For this purpose 19 different Ni(II)(2)L(μ-O(2)CR) complexes (2-20) incorporating carboxylates with pK(b) values in the range 9 to 14 have been prepared by the reaction of Ni(II)(2)L(μ-Cl) (1) and the respective sodium or triethylammonium carboxylates. The resulting carboxylato complexes, isolated as ClO(4)(-) or BPh(4)(-) salts, have been fully characterized by elemental analyses, IR, UV/vis spectroscopy, and X-ray crystallography. The possibility of accessing the Ni(II)(2)L(μ-O(2)CR) complexes by carboxylate exchange reactions has also been examined. The main findings are as follows: (i) Substitution reactions between 1 and NaO(2)CR are not affected by the basicity or the steric hindrance of the carboxylate. (ii) Complexes 2-20 form an isostructural series of bisoctahedral Ni(II)(2)L(μ-O(2)CR) compounds with a N(3)Ni(μ-SR)(2)(μ-O(2)CR)NiN(3) core. (iii) They are readily identified by their ν(as)(CO) and ν(s)(CO) stretching vibration bands in the ranges 1684-1576 cm(-1) and 1428-1348 cm(-1), respectively. (iv) The spin-allowed (3)A(2g) → (3)T(2g) (ν(1)) transition of the NiOS(2)N(3) chromophore is steadily red-shifted by about 7.5 nm per pK(b) unit with increasing pK(b) of the carboxylate ion. (v) The less basic the carboxylate ion, the more stable the complex. The stability difference across the series, estimated from the difference of the individual ligand field stabilization energies (LFSE), amounts to about 4.2 kJ/mol [Δ(LFSE)(2,18)]. (vi) The "second-sphere stabilization" of the nickel complexes is not reflected in the electronic absorption spectra, as these forces are aligned perpendicularly to the Ni-O bonds. (vii) Coordination of a basic carboxylate donor to the Ni(II)(2)L fragment weakens its Ni-N and Ni-S bonds. This bond weakening is reflected in small but significant bond length changes. (viii) The Ni(II)(2)L(μ-O(2)CR) complexes are relatively inert to carboxylate exchange reactions, except for the formato complex Ni(II)(2)L(μ-O(2)CH) (8), which reacts with both more and less basic carboxylato ligands.
[Ni(II)(2)L(μ-O(2)CR)]+(其中 L(2-)表示 24 元大环六胺二硫酚配体)配合物的性质取决于羧基配位体的碱性。为此,我们制备了 19 种不同的[Ni(II)(2)L(μ-O(2)CR)]+(2-20)配合物,它们包含 pK(b)值在 9 到 14 范围内的羧酸盐。这些羧酸盐通过[Ni(II)(2)L(μ-Cl)]+(1)与相应的钠盐或三乙铵盐反应得到。所得的羧酸盐配合物以 ClO4(-)或 BPh4(-)盐的形式分离,通过元素分析、IR、UV/vis 光谱和 X 射线晶体学进行了充分的表征。我们还研究了通过羧酸盐交换反应获得[Ni(II)(2)L(μ-O(2)CR)]+配合物的可能性。主要发现如下:(i) 1 和 NaO2CR 之间的取代反应不受羧酸盐的碱性或空间位阻的影响。(ii) 配合物 2-20 形成一系列结构相同的双八面体[Ni(II)(2)L(μ-O(2)CR)]+化合物,具有 N3Ni(μ-SR)(2)(μ-O(2)CR)NiN3核心。(iii) 它们可以通过它们在 1684-1576 cm(-1)和 1428-1348 cm(-1)范围内的 ν(as)(CO)和 ν(s)(CO)伸缩振动带很容易识别。(iv) NiOS2N3发色团的自旋允许(3)A2g→(3)T2g(ν(1))跃迁随着羧酸盐离子 pK(b)的增加,逐渐红移约 7.5nm/单位 pK(b)。(v) 羧酸盐离子的碱性越弱,配合物越稳定。从单个配体场稳定化能(LFSE)的差异估计,整个系列的稳定性差异约为 4.2kJ/mol[Δ(LFSE)(2,18)]。(vi) “第二球稳定化”对镍配合物的电子吸收光谱没有影响,因为这些力与 Ni-O 键垂直对齐。(vii) 碱性羧酸盐供体与Ni(II)(2)L片段的配位削弱了其 Ni-N 和 Ni-S 键。这种键的削弱反映在微小但显著的键长变化上。(viii) [Ni(II)(2)L(μ-O(2)CR)]+配合物对羧酸盐交换反应相对惰性,除了Ni(II)(2)L(μ-O(2)CH)(8)外,它与更碱性和更弱碱性的羧酸盐都反应。