Suppr超能文献

通过遥感估算深层的初级生产力。

Estimating primary production at depth from remote sensing.

作者信息

Lee Z P, Carder K L, Marra J, Steward R G, Perry M J

出版信息

Appl Opt. 1996 Jan 20;35(3):463-74. doi: 10.1364/AO.35.000463.

Abstract

By use of a common primary-production model and identical photosynthetic parameters, four different methods were used to calculate quanta (Q) and primary production (P) at depth for a study of high-latitude North Atlantic waters. The differences among the four methods relate to the use of pigment information in the upper water column. Methods 1 and 2 use pigment biomass (B) as an input and a subtropical, empirical relation between K(d) (diffuse attenuation coefficient) and B to estimate Q at depth. Method 1 uses measured B, but Method 2 uses B derived from the Coastal Zone Color Scanner (subtropical algorithm) as inputs. Methods 3 and 4 use the phytoplankton absorption coefficient (a(ph)) instead of B as input, and Method B uses empirically derived a(ph)(440) and K(d) values, and Method 4 uses analytically derived a(ph)(440) and a (total absorption coefficient) values based on the same remote measurements as Method 2. When the calculated and the measured values of Q(z) and P(z) were compared, Method 4 provided the closest results [for P(z), r(2) = 0.95 (n = 24), and for Q(z), r(2) = 0.92 (n = 11)]. Method 1 yielded the worst results [for P(z), r(2) = 0.56 and for Q(z), r(2) = 0.81]. These results indicate that one of the greatest uncertainties in the remote estimation of P can come from a potential mismatch of the pigment-specific absorption coefficient (a(ph)*), which is needed implicitly in current models or algorithms based on B. We point out that this potential mismatch can be avoided if we arrange the models or algorithms so that they are based on the pigment absorption coefficient (a(ph)). Thus, except for the accuracy of the photosynthetic parameters and the above-surface light intensity, the accuracy of the remote estimation of P depends on how accurately a(ph) can be estimated, but not how accurately B can be estimated. Also, methods to derive a(ph) empirically and analytically from remotely sensed data are introduced. Curiously, combined application of subtropical algorithms for both B and K(d) to subarctic waters apparently compensates to some extent for effects that are due to their similar and implicit pigment-specific absorption coefficients for the calculation of Q(z).

摘要

通过使用一个通用的初级生产模型和相同的光合参数,采用四种不同方法计算了高纬度北大西洋水域不同深度处的量子(Q)和初级生产力(P),以进行相关研究。这四种方法的差异在于对上覆水柱中色素信息的使用。方法1和方法2以上覆水柱色素生物量(B)为输入,利用K(d)(漫衰减系数)与B之间的亚热带经验关系来估算不同深度处的Q。方法1使用实测的B,而方法2使用由海岸带彩色扫描仪(亚热带算法)得出的B作为输入。方法3和方法4使用浮游植物吸收系数(a(ph))替代B作为输入,方法3使用经验得出的a(ph)(440)和K(d)值,方法4基于与方法2相同的遥感测量数据,使用解析得出的a(ph)(440)和a(总吸收系数)值。当比较Q(z)和P(z)的计算值与测量值时,方法4得出的结果最接近[对于P(z),r² = 0.95(n = 24),对于Q(z),r² = 0.92(n = 11)]。方法1得出的结果最差[对于P(z),r² = 0.56,对于Q(z),r² = 0.81]。这些结果表明,在初级生产力的遥感估算中,最大的不确定性之一可能源于色素特定吸收系数(a(ph)*)的潜在不匹配,当前基于B的模型或算法中隐含地需要该系数。我们指出,如果将模型或算法设置为基于色素吸收系数(a(ph)),则可以避免这种潜在的不匹配。因此,除了光合参数和表层光强的准确性外,初级生产力遥感估算的准确性取决于a(ph)的估算精度,而不是B的估算精度。此外,还介绍了从遥感数据中经验性和解析性推导a(ph)的方法。奇怪的是,将亚热带算法同时应用于B和K(d)来处理亚北极水域的数据,在某种程度上似乎补偿了因计算Q(z)时色素特定吸收系数相似且隐含而产生的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验