Suppr超能文献

FT-ICR-MS 分析LovF 型 277 kDa 聚酮合酶生物合成洛伐他汀 α-甲基丁酰侧链的中间体。

FT-ICR-MS characterization of intermediates in the biosynthesis of the α-methylbutyrate side chain of lovastatin by the 277 kDa polyketide synthase LovF.

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 92093, United States.

出版信息

Biochemistry. 2011 Jan 18;50(2):287-99. doi: 10.1021/bi1014776. Epub 2010 Dec 22.

Abstract

There are very few fungal polyketide synthases that have been characterized by mass spectrometry. In this paper we describe the in vitro reconstitution and FT-ICR-MS verification of the full activity of an intact 277 kDa fungal polyketide synthase LovF of the lovastatin biosynthetic pathway. We report here both the verification of the reconstitution of fully functional holo-LovF by using (13)C-labeled malonyl-CoA to form α-methylbutyrate functionality and also detection of five predicted intermediates covalently bound to the 4'-phosphopantetheine at the acyl carrier protein (ACP) active site utilizing the phosphopantetheine ejection assay and high-resolution mass spectrometry. Under in vitro conditions, the diketide acetoacetyl intermediate did not accumulate on the ACP active site of holo-LovF following incubation with malonyl-CoA substrate. We found that incubation of holo-LovF with acetoacetyl-CoA served as an effective means of loading the diketide intermediate onto the ACP active site of LovF. Our results demonstrate that subsequent α-methylation of the acetoacetyl intermediate stabilizes the intermediate onto the ACP active site and facilitates the formation and mass spectrometric detection of additional intermediates en route to the formation of α-methylbutyrate.

摘要

用质谱法对真菌聚酮合酶进行鉴定的研究非常少。本文描述了洛伐他汀生物合成途径中的全长 277 kDa 真菌聚酮合酶 LovF 的体外重建及其傅立叶变换离子回旋共振质谱(FT-ICR-MS)验证。本文报道了利用(13)C 标记的丙二酰辅酶 A 形成α-甲基丁酸盐功能来验证全功能的同型 LovF 重建,以及利用磷酸泛酰巯基乙胺(phosphopantetheine)逐出实验和高分辨率质谱检测到与酰基载体蛋白(ACP)活性位点共价结合的五个预测中间体。在体外条件下,在用丙二酰辅酶 A 孵育后,同型 LovF 的 ACP 活性位点上没有积累二酮酰基乙酰乙酰中间体。我们发现,用乙酰乙酰辅酶 A 孵育同型 LovF 是将二酮酰基中间体有效加载到 LovF 的 ACP 活性位点上的一种方法。我们的结果表明,随后的乙酰乙酰基中间体的α-甲基化稳定了中间体在 ACP 活性位点上,并促进了形成和质谱检测到更多的中间体,最终形成α-甲基丁酸盐。

相似文献

2
Acyltransferase mediated polyketide release from a fungal megasynthase.
J Am Chem Soc. 2009 Jun 24;131(24):8388-9. doi: 10.1021/ja903203g.
3
Probing the Interactions of early polyketide intermediates with the Actinorhodin ACP from S. coelicolor A3(2).
J Mol Biol. 2009 Jun 12;389(3):511-28. doi: 10.1016/j.jmb.2009.03.072. Epub 2009 Apr 8.
4
Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB.
FEBS J. 2007 Jun;274(11):2854-64. doi: 10.1111/j.1742-4658.2007.05818.x. Epub 2007 Apr 27.
5
Catalytic self-acylation of type II polyketide synthase acyl carrier proteins.
Chem Biol. 1998 Jan;5(1):35-47. doi: 10.1016/s1074-5521(98)90085-0.
6
Characterization of Unexpected Self-Acylation Activity of Acyl Carrier Proteins in a Modular Type I Apicomplexan Polyketide Synthase.
ACS Chem Biol. 2023 Apr 21;18(4):785-793. doi: 10.1021/acschembio.2c00783. Epub 2023 Mar 9.
8
Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10316-21. doi: 10.1073/pnas.1607210113. Epub 2016 Aug 29.
10
GNAT-like strategy for polyketide chain initiation.
Science. 2007 Nov 9;318(5852):970-4. doi: 10.1126/science.1148790.

引用本文的文献

2
Structural basis for the biosynthesis of lovastatin.
Nat Commun. 2021 Feb 8;12(1):867. doi: 10.1038/s41467-021-21174-8.
4
A scalable platform to identify fungal secondary metabolites and their gene clusters.
Nat Chem Biol. 2017 Aug;13(8):895-901. doi: 10.1038/nchembio.2408. Epub 2017 Jun 12.
5
Insights into 6-Methylsalicylic Acid Bio-assembly by Using Chemical Probes.
Angew Chem Weinheim Bergstr Ger. 2016 Mar 1;128(10):3524-3528. doi: 10.1002/ange.201509038. Epub 2016 Feb 2.
6
Insights into 6-Methylsalicylic Acid Bio-assembly by Using Chemical Probes.
Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3463-7. doi: 10.1002/anie.201509038. Epub 2016 Feb 2.
7
Reconstitution of Metabolic Pathways: Insights into Nature's Chemical Logic.
Synlett. 2015;26(8):1008-1025. doi: 10.1055/s-0034-1380264.
8
Investigation of fungal iterative polyketide synthase functions using partially assembled intermediates.
J Am Chem Soc. 2013 Feb 6;135(5):1735-8. doi: 10.1021/ja4001823. Epub 2013 Jan 28.
9
Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.
J Am Chem Soc. 2013 Jan 23;135(3):1155-62. doi: 10.1021/ja3119674. Epub 2013 Jan 11.

本文引用的文献

1
Direct acylation of carrier proteins with functionalized beta-lactones.
Org Lett. 2010 May 21;12(10):2330-3. doi: 10.1021/ol100684s.
2
Peering into the black box of fungal polyketide biosynthesis.
Chembiochem. 2010 Mar 1;11(4):485-8. doi: 10.1002/cbic.201000023.
3
Complete reconstitution of a highly reducing iterative polyketide synthase.
Science. 2009 Oct 23;326(5952):589-92. doi: 10.1126/science.1175602.
5
Polyketide decarboxylative chain termination preceded by o-sulfonation in curacin a biosynthesis.
J Am Chem Soc. 2009 Nov 11;131(44):16033-5. doi: 10.1021/ja9071578.
6
Acyltransferase mediated polyketide release from a fungal megasynthase.
J Am Chem Soc. 2009 Jun 24;131(24):8388-9. doi: 10.1021/ja903203g.
7
In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.
J Nat Prod. 2009 Mar 27;72(3):469-72. doi: 10.1021/np800598t.
8
A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both alpha- and beta-ketone reduction during chain growth.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12809-14. doi: 10.1073/pnas.0806305105. Epub 2008 Aug 22.
9
Accessing natural product biosynthetic processes by mass spectrometry.
Curr Opin Chem Biol. 2008 Oct;12(5):475-82. doi: 10.1016/j.cbpa.2008.07.022.
10
Deconstruction of iterative multidomain polyketide synthase function.
Science. 2008 Apr 11;320(5873):243-6. doi: 10.1126/science.1154711.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验