Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
Mol Immunol. 2011 Jan;48(4):497-504. doi: 10.1016/j.molimm.2010.10.006. Epub 2010 Nov 10.
Laboratory-adapted and vaccine strains of measles virus (MV) induce type I interferon (IFN) in infected cells to a far greater extent than wild-type strains. We investigated the mechanisms for this differential type I IFN production in cells infected with representative MV strains. The overexpression of the wild-type V protein suppressed melanoma differentiation-associated gene 5 (MDA5)-induced IFN-β promoter activity, while this was not seen in A549 cells expressing CD150 transfected with the V protein of the vaccine strain. The V proteins of the wild-type also suppressed poly I:C-induced IFN regulatory factor 3 (IRF-3) dimerization. The V proteins of the wild-type and vaccine strain did not affect retinoic acid-inducible gene 1 (RIG-I)- or toll-IL-1R homology domain-containing adaptor molecule 1 (TICAM-1)-induced IFN-β promoter activation. We identified an amino acid substitution of the cysteine residue at position 272 (which is conserved among paramyxoviruses) to an arginine residue in the V protein of the vaccine strain. Only the V protein possessing the 272C residue binds to MDA5. The mutation introduced into the wild-type V protein (C272R) was unable to suppress MDA5-induced IRF-3 nuclear translocation and IFN-β promoter activation as seen in the V proteins of the vaccine strain, whereas the mutation introduced in the vaccine strain V protein (R272C) was able to inhibit MDA5-induced IRF-3 and IFN-β promoter activation. The other 6 residues of the vaccine strain V sequence inconsistent with the authentic sequence of the wild-type V protein barely affected the IRF-3 nuclear translocation. These data suggested that the structural difference of laboratory-adapted [corrected] MV V protein hampers MDA5 blockade and acts as a nidus for the spread/amplification of type I IFN induction. Ultimately, measles vaccine strains have two modes of IFN-β-induction for their attenuation: V protein mutation and production of defective interference (DI) RNA.
实验室适应株和疫苗株麻疹病毒(MV)在感染细胞中诱导 I 型干扰素(IFN)的程度远高于野生型毒株。我们研究了代表 MV 株感染细胞中这种差异 I 型 IFN 产生的机制。野生型 V 蛋白的过表达抑制了黑色素瘤分化相关基因 5(MDA5)诱导的 IFN-β启动子活性,但在表达 CD150 的 A549 细胞中转染疫苗株 V 蛋白时则没有这种现象。野生型的 V 蛋白也抑制了多聚 I:C 诱导的干扰素调节因子 3(IRF-3)二聚化。野生型和疫苗株的 V 蛋白不影响视黄酸诱导基因 1(RIG-I)或 Toll-IL-1R 同源结构域包含衔接分子 1(TICAM-1)诱导的 IFN-β启动子激活。我们发现,疫苗株 V 蛋白中的一个半胱氨酸残基(该残基在副粘病毒中保守)被替换为精氨酸残基。只有具有 272C 残基的 V 蛋白才能与 MDA5 结合。野生型 V 蛋白中引入的突变(C272R)不能像疫苗株 V 蛋白那样抑制 MDA5 诱导的 IRF-3 核易位和 IFN-β启动子激活,而疫苗株 V 蛋白中引入的突变(R272C)则能够抑制 MDA5 诱导的 IRF-3 和 IFN-β启动子激活。疫苗株 V 序列中的其他 6 个与野生型 V 蛋白的真实序列不一致的残基几乎不影响 IRF-3 的核易位。这些数据表明,实验室适应株 MV V 蛋白的结构差异阻碍了 MDA5 的阻断作用,并成为 I 型 IFN 诱导传播/扩增的病灶。最终,麻疹疫苗株通过 V 蛋白突变和产生缺陷干扰(DI)RNA 两种方式诱导 IFN-β 的产生。