Dipartimento di Fisica, Università di Trento, Via Sommarive 14, I-38123 Povo, Trento, Italy.
J Chem Phys. 2010 Nov 14;133(18):184308. doi: 10.1063/1.3505553.
The reactivity of naphthyl cations with benzene is investigated in a joint experimental and theoretical approach. Experiments are performed by using guided ion beam tandem mass spectrometers equipped with electron impact or atmospheric pressure chemical ion sources to generate C(10)H(7)(+) with different amounts of internal excitation. Under single collision conditions, C-C coupling reactions leading to hydrocarbon growth are observed. The most abundant ionic products are C(16)H(13)(+), C(16)H(n)(+) (with n=10-12), and C(15)H(10)(+). From pressure-dependent measurements, absolute cross sections of 1.0±0.3 and 2±0.6 Å(2) (at a collision energy of about 0.2 eV in the center of mass frame) are derived for channels leading to the formation of C(16)H(12)(+) and C(15)H(10)(+) ions, respectively. From cross section values a phenomenological total rate constant k=(5.8±1.9)×10(-11) cm(3) s(-1) at an average collision energy of about 0.27 eV can be estimated for the process C(10)H(7)(+)+C(6)H(6)→all products. The energy behavior of the reactive cross sections, as well as further experiments performed using partial isotopic labeling of reagents, support the idea that the reaction proceeds via a long lived association product, presumably the covalently bound protonated phenylnaphthalene, from which lighter species are generated by elimination of neutral fragments (H, H(2), CH(3)). A major signal relevant to the fragmentation of the initial adduct C(16)H(13)(+) belongs to C(15)H(10)(+). Since it is not obvious how CH(3) loss from C(16)H(13)(+) can take place to form the C(15)H(10)(+) radical cation, a theoretical investigation focuses on possible unimolecular transformations apt to produce it. Naphthylium can act as an electrophile and add to the π system of benzene, leading to a barrierless formation of the ionic adduct with an exothermicity of about 53 kcal mol(-1). From this structure, an intramolecular electrophilic addition followed by H shifts and ring opening steps leads to an overall exothermic loss (-7.1 kcal mol(-1) with respect to reagents) of the methyl radical from that part of the system which comes from benzene. Methyl loss can take place also from the "naphthyl" part, though via an endoergic route. Experimental and theoretical results show that an ionic route is viable for the growth of polycyclic aromatic species by association of smaller building blocks (naphthyl and phenyl rings) and this may be of particular relevance for understanding the formation of large molecules in ionized gases.
研究了萘阳离子与苯的反应性,采用实验和理论相结合的方法。实验是通过使用配备电子冲击或常压化学离子源的引导离子束串联质谱仪进行的,以产生具有不同内部激发能的 C(10)H(7)(+)。在单碰撞条件下,观察到导致烃增长的 C-C 偶联反应。最丰富的离子产物是 C(16)H(13)(+)、C(16)H(n)(+)(其中 n=10-12)和 C(15)H(10)(+)。从压力相关的测量中,推导出分别通向 C(16)H(12)(+)和 C(15)H(10)(+)离子形成的通道的绝对截面为 1.0±0.3 和 2±0.6 Å(2)(在质心框架中的碰撞能量约为 0.2 eV)。从截面值可以估计出过程 C(10)H(7)(+)+C(6)H(6)→所有产物的经验总速率常数 k=(5.8±1.9)×10(-11) cm(3) s(-1),平均碰撞能量约为 0.27 eV。反应截面的能量行为,以及使用试剂部分同位素标记进行的进一步实验,支持了这样的想法,即反应通过长寿命缔合产物进行,推测为共价键合的质子化苯基萘,从中通过消除中性碎片(H、H(2)、CH(3))生成较轻的物质。与初始加合物 C(16)H(13)(+)的碎裂相关的主要信号属于 C(15)H(10)(+)。由于 C(16)H(13)(+) 中 CH(3)的损失如何形成 C(15)H(10)(+)自由基阳离子并不明显,因此理论研究集中在可能产生它的单一分子转化上。萘鎓可以作为亲电试剂,添加到苯的π系统中,导致离子加合物的形成没有势垒,放热约 53 kcal mol(-1)。从这个结构中,通过 H 转移和开环步骤进行的分子内亲电加成导致从系统中来自苯的部分的甲基自由基的整体放热损失(相对于试剂为-7.1 kcal mol(-1))。甲基也可以从“萘”部分损失,但通过吸热途径。实验和理论结果表明,通过较小构建块(萘基和苯基环)的缔合,离子途径是多环芳烃物种生长的可行途径,这对于理解离子化气体中大分子的形成可能特别重要。