The University of Chicago, Department of Chemistry and James Franck Institute, Chicago, IL, USA.
IET Syst Biol. 2010 Nov;4(6):379-92. doi: 10.1049/iet-syb.2009.0070.
Regulatory networks in cells may comprise a variety of types of molecular interactions. The most basic are pairwise interactions, in which one species controls the behaviour of another (e.g. a transcription factor activates or represses a gene). Higher-order interactions, while more subtle, may be important for determining the function of networks. Here, the authors systematically expand a simple master equation model for a gene to derive an approach for robustly assessing the cooperativity (effective copy number) with which a transcription factor acts. The essential idea is that moments of a joint distribution of protein copy numbers determine the Hill coefficient of a cis-regulatory input function without non-linear fitting. The authors show that this method prescribes a definition of cooperativity that is meaningful even in highly complex situations in which the regulation does not conform to a simple Hill function. To illustrate the utility of the method, the authors measure the cooperativity of the transcription factor CI in simulations of phage- and show how the cooperativity accurately reflects the behaviour of the system. The authors numerically assess the effects of deviations from ideality, as well as possible sources of error. The relationship to other definitions of cooperativity and issues for experimentally realising the procedure are discussed.
细胞中的调控网络可能包含多种类型的分子相互作用。最基本的是成对相互作用,其中一种物质控制另一种物质的行为(例如,转录因子激活或抑制基因)。虽然高阶相互作用更微妙,但对于确定网络的功能可能很重要。在这里,作者系统地扩展了一个简单的基因主方程模型,以推导出一种稳健评估转录因子作用的协同性(有效拷贝数)的方法。其基本思想是,蛋白质拷贝数的联合分布的矩确定顺式调控输入函数的Hill 系数,而无需进行非线性拟合。作者表明,即使在调节不符合简单 Hill 函数的高度复杂情况下,该方法规定的协同性定义也是有意义的。为了说明该方法的实用性,作者在噬菌体的模拟中测量了转录因子 CI 的协同性,并展示了协同性如何准确反映系统的行为。作者还数值评估了偏离理想情况的影响,以及可能的误差源。讨论了与其他协同性定义的关系以及实验实现该过程的问题。