UMR-CNRS-UP 6503, Laboratoire de Catalyse en Chimie Organique, Equipe Physiologie Moléculaire du Transport de Sucres, Université de Poitiers, Bâtiment Botanique, 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France.
BMC Plant Biol. 2010 Nov 12;10:245. doi: 10.1186/1471-2229-10-245.
In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis.
In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5).
This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters.
在高等植物中,糖不仅是营养物质,也是重要的信号分子。它们通过糖转运蛋白在植物体内分布,这些转运蛋白不仅参与通过传导复合物的装载和卸载进行糖的长距离运输,还参与糖向源和汇细胞的分配。最近发布的葡萄基因组序列为鉴定木质物种中的蔗糖和单糖转运体基因家族,并通过系统发生分析将其与草本拟南芥进行比较提供了机会。
在世界上最重要的经济水果作物之一的葡萄中,似乎存在 4 个蔗糖和 59 个单糖转运体基因,并且单糖转运体家族可以分为 7 个亚家族。蛋白质序列的系统发生分析表明,葡萄和拟南芥之间存在同源物。对最具特征的转运体基因家族(蔗糖、己糖和多元醇转运体)启动子序列中的顺式调控元件进行搜索,表明其中一些可能受糖的调控。为了同时对多个基因进行分析,我们创建了一个带有 20 个糖转运体基因特异性 cDNA 片段的宏阵列。该宏阵列分析表明,在大多数营养器官中,两个己糖(VvHT1、VvHT3)、一个多元醇(VvPMT5)和一个蔗糖(VvSUC27)转运体基因表达水平较高。一个己糖转运体(VvHT2)和两个液泡膜单糖转运体(VvTMT1、VvTMT2)基因的表达在浆果发育过程中受到调控。最后,三个假定的己糖转运体基因表现出特定器官的特异性,在种子(VvHT3、VvHT5)、根(VvHT2)或成熟叶(VvHT5)中高度表达。
本研究全面调查了葡萄中的糖转运体基因,并揭示了木质植物中的糖转运体基因家族与草本物种非常相似。专门的宏阵列提供了葡萄糖转运体基因表达谱,这可能有助于了解它们在植物和浆果发育中的生理功能。本研究结果可能对我们对植物糖转运体的认识产生重大影响。