Suppr超能文献

利用医院出院数据识别需要长期慢性病管理的儿童。

Identifying children with lifelong chronic conditions for care coordination by using hospital discharge data.

机构信息

Center for Children with Special Needs, Seattle Children's Hospital, Seattle, Wash 98101, USA.

出版信息

Acad Pediatr. 2010 Nov-Dec;10(6):417-23. doi: 10.1016/j.acap.2010.08.009.

Abstract

BACKGROUND

Children with lifelong chronic conditions (LLCC) are costly, of low prevalence, and a high proportion of patients at children's hospitals. Few methods identify these patients.

OBJECTIVES

We sought to identify children with LLCC in hospital discharge data for care coordination by using clinical risk groups (CRGs), to evaluate the accuracy of this methodology compared with a chart review and to investigate accuracy according to condition groups.

METHODS

CRG software identified LLCC children who receive care at a primary care clinic, Odessa Brown Children's Clinic, by using Seattle Children's Hospital discharge data.

RESULTS

There were 5356 active Odessa Brown Children's Clinic patients with at least 1 clinic encounter in 2006-2007. Six hundred two (11.2%) patients were admitted to Seattle Children's Hospital, and 1703 (31.8%) were seen only in the emergency department over 7 years (2001-2007). One hundred sixty-four (7%) were identified to have a LLCC. In a blind review of 200 (33.2%) children with inpatient encounters, the specificity of the CRG designation to LLCC was 95.0% (95% confidence interval [CI], 90.0%-98.0%), sensitivity 76.3% (95% CI, 63.4%-86.4%). Mental health conditions formed the largest group that was chart-review positive and CRG negative (7 of 14). Children hospitalized before 13 months of age were the second largest group (3 of 14). Clinical review placed the 164 patients in these condition groups: sickle cell disease, 43 (26.2%), neurological, 37 (22.6%), mental health, 22 (13.4%), malignancies, 4 (2.4%), other 52 (31.7%), and no chronic condition 6 (3.7%).

CONCLUSION

This study demonstrates a unique way to identify children with LLCC for care coordination by using hospital administrative data.

摘要

背景

患有终身性慢性疾病(LLCC)的儿童数量较多,费用高昂,且在儿童医院中所占比例较低。目前,识别这些患者的方法很少。

目的

我们试图通过临床风险组(CRG)在住院数据中识别患有 LLCC 的儿童,以便为他们提供协调的护理,评估这种方法与病历回顾相比的准确性,并根据疾病组调查准确性。

方法

使用西雅图儿童医院的出院数据,通过 CRG 软件识别在俄克拉荷马州布朗儿童诊所(Odessa Brown Children's Clinic)接受治疗的 LLCC 患儿。

结果

2006-2007 年期间,俄克拉荷马州布朗儿童诊所共有 5356 名活跃患者,至少有 1 次诊所就诊记录。602 名(11.2%)患者被收入西雅图儿童医院,1703 名(31.8%)在 7 年期间仅因急诊而就诊(2001-2007 年)。有 164 名(7%)患者被确定患有 LLCC。在对 200 名(33.2%)有住院记录的患儿进行盲法回顾后,CRG 对 LLCC 的特异性为 95.0%(95%置信区间[CI],90.0%-98.0%),敏感性为 76.3%(95% CI,63.4%-86.4%)。心理健康状况构成了病历回顾阳性而 CRG 阴性比例最大的一组(7/14)。13 个月龄以下住院的患儿是第二大组(3/14)。临床评估将这 164 名患儿归入以下疾病组:镰状细胞病 43 名(26.2%)、神经科疾病 37 名(22.6%)、心理健康疾病 22 名(13.4%)、恶性肿瘤 4 名(2.4%)、其他 52 名(31.7%)、无慢性疾病 6 名(3.7%)。

结论

本研究展示了一种利用医院管理数据识别需要协调护理的 LLCC 患儿的独特方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验