Suppr超能文献

不同呼吸和嗅探条件下大鼠鼻腔内的气流与纳米颗粒沉积:非稳态效应的计算评估

Airflow and nanoparticle deposition in rat nose under various breathing and sniffing conditions: a computational evaluation of the unsteady effect.

作者信息

Jiang Jianbo, Zhao Kai

机构信息

Monell Chemical Senses Center, Philadelphia, PA 19104.

出版信息

J Aerosol Sci. 2010 Nov 1;41(11):1030-1043. doi: 10.1016/j.jaerosci.2010.06.005.

Abstract

Accurate prediction of nanoparticle (1100 nm) deposition in the rat nasal cavity is important for assessing the toxicological impact of inhaled nanoparticles as well as for potential therapeutic applications. A quasi-steady assumption has been widely adopted in the past investigations on this topic, yet the validity of such simplification under various breathing and sniffing conditions has not been carefully examined. In this study, both steady and unsteady computational fluid dynamics (CFD) simulations were conducted in a published rat nasal model under various physiologically realistic breathing and sniffing flow rates. The transient airflow structures, nanoparticle transport and deposition patterns in the whole nasal cavity and the olfactory region were investigated and compared with steady state simulation of equivalent flow rate. The results showed that (1) the quasi-steady flow assumption for cyclic flow was valid for over 70% of the cycle period during all simulated breathing and sniffing conditions in the rat nasal cavity, or the unsteady effect was only significant during the transition between the respiratory phases; (2) yet the quasi-steady assumption for nanoparticle transport was not valid, except in the vicinity of peak respiration. In general, the total deposition efficiency of nanoparticle during cyclic breathing would be lower than that of steady state due to the unsteady effect on particle transport and deposition, and further decreased with the increase of particle size, sniffing frequency, and flow rate. In the contrary, previous study indicated that for micro-scale particles (0.54μm), the unsteady effect would increase deposition efficiencies in rat nasal cavity. Combined, these results suggest that the quasi-steady assumption of nasal particle transport during cycling breathing should be used with caution for an accurate assessment of the toxicological and therapeutic impact of particle inhalation. Empirical equations and effective steady state approximation derived in this study are thus valuable to estimate such unsteady effects in future applications.

摘要

准确预测纳米颗粒(1100纳米)在大鼠鼻腔中的沉积,对于评估吸入纳米颗粒的毒理学影响以及潜在的治疗应用至关重要。过去关于该主题的研究广泛采用了准稳态假设,但尚未仔细研究这种简化在各种呼吸和嗅吸条件下的有效性。在本研究中,在已发表的大鼠鼻腔模型中,针对各种生理现实的呼吸和嗅吸流速进行了稳态和非稳态计算流体动力学(CFD)模拟。研究了整个鼻腔和嗅觉区域的瞬态气流结构、纳米颗粒传输和沉积模式,并与等效流速的稳态模拟进行了比较。结果表明:(1)在大鼠鼻腔所有模拟的呼吸和嗅吸条件下,循环气流的准稳态流动假设在超过70%的周期内是有效的,或者非稳态效应仅在呼吸阶段之间的过渡期间显著;(2)然而,纳米颗粒传输的准稳态假设无效,除了在呼吸峰值附近。一般来说,由于对颗粒传输和沉积的非稳态影响,循环呼吸期间纳米颗粒的总沉积效率将低于稳态,并且随着颗粒尺寸、嗅吸频率和流速的增加而进一步降低。相反,先前的研究表明,对于微米级颗粒(0.54μm),非稳态效应会增加大鼠鼻腔中的沉积效率。综合来看,这些结果表明,在循环呼吸期间,对于鼻腔颗粒传输的准稳态假设应谨慎使用,以准确评估颗粒吸入的毒理学和治疗影响。因此,本研究中推导的经验方程和有效的稳态近似对于估计未来应用中的这种非稳态效应具有重要价值。

相似文献

2
The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity.
Chem Senses. 2017 Oct 1;42(8):683-698. doi: 10.1093/chemse/bjx053.
3
Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
Respir Physiol Neurobiol. 2017 Oct;244:56-72. doi: 10.1016/j.resp.2017.06.005. Epub 2017 Jul 1.
4
Unsteady analysis of the airflow in human nasal airway - a computational study.
Comput Biol Med. 2025 Jun;191:110136. doi: 10.1016/j.compbiomed.2025.110136. Epub 2025 Apr 7.
5
Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory.
Part Fibre Toxicol. 2019 Jan 25;16(1):6. doi: 10.1186/s12989-019-0290-8.
6
Effect of transient breathing cycle on the deposition of micro and nanoparticles on respiratory walls.
Comput Methods Programs Biomed. 2023 Jun;236:107501. doi: 10.1016/j.cmpb.2023.107501. Epub 2023 Mar 22.
8
Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery.
Comput Biol Med. 2015 Jun;61:8-18. doi: 10.1016/j.compbiomed.2015.03.015. Epub 2015 Mar 24.
10
Computational model of particle deposition in the nasal cavity under steady and dynamic flow.
Comput Methods Biomech Biomed Engin. 2015;18(5):514-26. doi: 10.1080/10255842.2013.819856. Epub 2013 Aug 25.

引用本文的文献

1
Is the mouse nose a miniature version of a rat nose? A computational comparative study.
Comput Methods Programs Biomed. 2024 Sep;254:108282. doi: 10.1016/j.cmpb.2024.108282. Epub 2024 Jun 8.
3
Domestic cat nose functions as a highly efficient coiled parallel gas chromatograph.
PLoS Comput Biol. 2023 Jun 29;19(6):e1011119. doi: 10.1371/journal.pcbi.1011119. eCollection 2023 Jun.
6
Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora).
PLoS One. 2018 Dec 19;13(12):e0207381. doi: 10.1371/journal.pone.0207381. eCollection 2018.
7
Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit.
Nat Commun. 2018 Apr 9;9(1):1347. doi: 10.1038/s41467-018-03837-1.
8
A primacy code for odor identity.
Nat Commun. 2017 Nov 14;8(1):1477. doi: 10.1038/s41467-017-01432-4.
9
Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.
PLoS One. 2016 Mar 4;11(3):e0150638. doi: 10.1371/journal.pone.0150638. eCollection 2016.
10
Olfactory deposition of inhaled nanoparticles in humans.
Inhal Toxicol. 2015;27(8):394-403. doi: 10.3109/08958378.2015.1066904. Epub 2015 Jul 21.

本文引用的文献

1
Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region.
Inhal Toxicol. 2009 Dec;21(14):1165-75. doi: 10.3109/08958370902882713.
2
A method for generating natural and user-defined sniffing patterns in anesthetized or reduced preparations.
Chem Senses. 2009 Jan;34(1):63-76. doi: 10.1093/chemse/bjn051. Epub 2008 Sep 12.
3
Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.
Chem Senses. 2007 Mar;32(3):215-23. doi: 10.1093/chemse/bjl047. Epub 2007 Jan 13.
4
Numerical modeling of odorant uptake in the rat nasal cavity.
Chem Senses. 2007 Mar;32(3):273-84. doi: 10.1093/chemse/bjl056. Epub 2007 Jan 13.
5
Responses of the rat olfactory epithelium to retronasal air flow.
J Neurophysiol. 2007 Mar;97(3):1941-50. doi: 10.1152/jn.01305.2006. Epub 2007 Jan 10.
6
Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
J Biomech Eng. 2006 Oct;128(5):697-706. doi: 10.1115/1.2244574.
8
Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose.
Chem Senses. 2006 Feb;31(2):107-18. doi: 10.1093/chemse/bjj008. Epub 2005 Dec 14.
9
Translocation of inhaled ultrafine particles to the brain.
Inhal Toxicol. 2004 Jun;16(6-7):437-45. doi: 10.1080/08958370490439597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验