NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
Nat Commun. 2017 Nov 14;8(1):1477. doi: 10.1038/s41467-017-01432-4.
Humans can identify visual objects independently of view angle and lighting, words independently of volume and pitch, and smells independently of concentration. The computational principles underlying invariant object recognition remain mostly unknown. Here we propose that, in olfaction, a small and relatively stable set comprised of the earliest activated receptors forms a code for concentration-invariant odor identity. One prediction of this "primacy coding" scheme is that decisions based on odor identity can be made solely using early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the sensory integration time necessary for odor identification and demonstrate that animals can use information occurring <100 ms after inhalation onset to identify odors. Using multi-electrode array recordings of odor responses in the olfactory bulb, we find that concentration-invariant units respond earliest and at latencies that are within this behaviorally-defined time window. We propose a computational model demonstrating how such a code can be read by neural circuits of the olfactory system.
人类可以独立于视角和光照识别视觉物体,独立于音量和音高识别单词,独立于浓度识别气味。不变物体识别的计算原理在很大程度上仍然未知。在这里,我们提出在嗅觉中,由最早激活的受体组成的一小部分相对稳定的受体集合形成了浓度不变的气味身份的代码。这种“优先编码”方案的一个预测是,基于气味身份的决策可以仅使用早期气味诱发的神经活动来做出。使用光遗传掩蔽范式,我们定义了气味识别所需的感觉整合时间,并证明动物可以使用吸入开始后<100 毫秒内发生的信息来识别气味。使用嗅球中气味反应的多电极阵列记录,我们发现浓度不变的单位反应最早,潜伏期在这个行为定义的时间窗口内。我们提出了一个计算模型,展示了这种代码如何被嗅觉系统的神经回路读取。