Suppr超能文献

美国人口估计发展的新方向?

New Directions in the Development of Population Estimates in the United States?

作者信息

Swanson David A, McKibben Jerome N

出版信息

Popul Res Policy Rev. 2010 Dec;29(6):797-818. doi: 10.1007/s11113-009-9164-3. Epub 2009 Nov 13.

Abstract

The advent of a continuously updated Master Area File (MAF) following the 2000 census represents an information resource that can be tapped for purposes of developing timely, cost-effective, and precise population estimates for even the smallest of geographical units (e.g., census blocks). We argue that the MAF can be enhanced (EMAF) for these purposes. In support of our argument we describe a set of activities needed to develop EMAF, each of which is well within the current capabilities of the U.S. Census Bureau and discuss various costs and benefits of each. We also describe how EMAF would provide population estimates containing a wide range of demographic (e.g., age, race, and sex) and socio-economic characteristics (e.g., educational attainment, income, and employment). As such, it could largely negate and eliminate the need for many of the traditional demographic methods of population estimation and possibly reduce the number of sample surveys. We identify important challenges that must be surmounted in order to realize EMAF and make suggestions for doing so. We conclude by noting that the idea of the EMAF could be of interest to other countries with MAF files and strong administrative records systems that, like the United States, are facing the challenge of producing good population information in the face of increasing census costs.

摘要

2000年人口普查之后出现的持续更新的主区域文件(MAF)是一种信息资源,可用于为哪怕最小的地理单元(如普查街区)及时、经济高效且精确地估算人口。我们认为,出于这些目的,可以对MAF进行强化(EMAF)。为支持我们的观点,我们描述了开发EMAF所需的一系列活动,其中每项活动都完全在美国人口普查局目前的能力范围内,并讨论了每项活动的各种成本和收益。我们还描述了EMAF将如何提供包含广泛人口特征(如年龄、种族和性别)以及社会经济特征(如教育程度、收入和就业)的人口估算。因此,它在很大程度上可以否定并消除许多传统人口估算方法的必要性,并可能减少样本调查的数量。我们确定了实现EMAF必须克服的重大挑战,并提出了相应建议。我们最后指出,EMAF的想法可能会引起其他拥有MAF文件和强大行政记录系统的国家的兴趣,这些国家与美国一样,在面对人口普查成本不断增加的情况下,面临着提供高质量人口信息的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7976/2956887/375ff59db5ed/11113_2009_9164_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验