Suppr超能文献

静息态功能连接估计的自发 BOLD 事件触发平均值。

Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state.

机构信息

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

出版信息

Neurosci Lett. 2011 Jan 20;488(2):158-63. doi: 10.1016/j.neulet.2010.11.020. Epub 2010 Nov 13.

Abstract

Recent neuroimaging studies have demonstrated that the spontaneous brain activity reflects, to a large extent, the same activation patterns measured in response to cognitive and behavioral tasks. This correspondence between activation and rest has been explored with a large repertoire of computational methods, ranging from analysis of pairwise interactions between areas of the brain to the global brain networks yielded by independent component analysis. In this paper we describe an alternative method based on the averaging of the BOLD signal at a region of interest (target) triggered by spontaneous increments in activity at another brain area (seed). The resting BOLD event triggered averages ("rBeta") can be used to estimate functional connectivity at resting state. Using two simple examples, here we illustrate how the analysis of the average response triggered by spontaneous increases/decreases in the BOLD signal is sufficient to capture the aforementioned correspondence in a variety of circumstances. The computation of the non linear response during rest here described allows for a direct comparison with results obtained during task performance, providing an alternative measure of functional interaction between brain areas.

摘要

最近的神经影像学研究表明,自发脑活动在很大程度上反映了与认知和行为任务测量相同的激活模式。这种激活与静息之间的对应关系已经通过大量的计算方法进行了探索,从分析大脑区域之间的成对相互作用到由独立成分分析产生的全局大脑网络。在本文中,我们描述了一种基于对由另一个大脑区域(种子)的活动自发增加触发的感兴趣区域(目标)的 BOLD 信号进行平均的替代方法。由自发的 BOLD 信号增加/减少触发的静息 BOLD 事件平均(“rBeta”)可用于估计静息状态下的功能连接。使用两个简单的示例,这里我们说明如何分析自发的 BOLD 信号增加/减少触发的平均响应足以在各种情况下捕捉到上述对应关系。此处描述的静息期间的非线性响应计算允许与任务执行期间获得的结果进行直接比较,为大脑区域之间的功能相互作用提供了替代度量。

相似文献

1
Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state.
Neurosci Lett. 2011 Jan 20;488(2):158-63. doi: 10.1016/j.neulet.2010.11.020. Epub 2010 Nov 13.
2
Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).
Neuroimage. 2012 May 15;61(1):41-9. doi: 10.1016/j.neuroimage.2012.02.080. Epub 2012 Mar 6.
3
A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
Med Image Anal. 2013 Apr;17(3):365-74. doi: 10.1016/j.media.2013.01.003. Epub 2013 Jan 29.
4
On the Stability of BOLD fMRI Correlations.
Cereb Cortex. 2017 Oct 1;27(10):4719-4732. doi: 10.1093/cercor/bhw265.
5
Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.
Neuroimage. 2010 May 1;50(4):1690-701. doi: 10.1016/j.neuroimage.2010.01.002. Epub 2010 Jan 15.
6
Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms.
Brain Connect. 2018 Jun;8(5):268-275. doi: 10.1089/brain.2017.0495.
8
Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.
Neuroimage. 2013 Jan 15;65:216-22. doi: 10.1016/j.neuroimage.2012.10.015. Epub 2012 Oct 13.
9
The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
Neuroimage. 2013 Jan 15;65:499-510. doi: 10.1016/j.neuroimage.2012.09.044. Epub 2012 Sep 25.
10
Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
Neuroimage. 2013 Dec;83:937-50. doi: 10.1016/j.neuroimage.2013.07.019. Epub 2013 Jul 18.

引用本文的文献

1
Dynamic functional connectivity to tile the spatiotemporal mosaic of brain states.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00364. eCollection 2024.
2
Event-Marked Windowed Communication: Inferring Activity Propagation from Neural Time Series.
Hum Brain Mapp. 2025 Jun 1;46(8):e70223. doi: 10.1002/hbm.70223.
4
Frequency dependent whole-brain coactivation patterns analysis in Alzheimer's disease.
Front Neurosci. 2023 Oct 25;17:1198839. doi: 10.3389/fnins.2023.1198839. eCollection 2023.
5
Increased functional connectivity patterns in mild Alzheimer's disease: A rsfMRI study.
Front Aging Neurosci. 2023 Jan 9;14:1037347. doi: 10.3389/fnagi.2022.1037347. eCollection 2022.
6
Estimation of neuronal task information in fMRI using zero frequency resonator.
Neuroimage. 2023 Feb 15;267:119865. doi: 10.1016/j.neuroimage.2023.119865. Epub 2023 Jan 5.
7
Mode decomposition-based time-varying phase synchronization for fMRI.
Neuroimage. 2022 Nov 1;261:119519. doi: 10.1016/j.neuroimage.2022.119519. Epub 2022 Jul 26.
8
Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data.
Neuroimage. 2022 Oct 15;260:119460. doi: 10.1016/j.neuroimage.2022.119460. Epub 2022 Jul 19.
10
Moving beyond the 'CAP' of the Iceberg: Intrinsic connectivity networks in fMRI are continuously engaging and overlapping.
Neuroimage. 2022 May 1;251:119013. doi: 10.1016/j.neuroimage.2022.119013. Epub 2022 Feb 18.

本文引用的文献

1
Brain resting state is disrupted in chronic back pain patients.
Neurosci Lett. 2010 Nov 12;485(1):26-31. doi: 10.1016/j.neulet.2010.08.053. Epub 2010 Aug 26.
3
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization.
J Neurophysiol. 2010 Jan;103(1):297-321. doi: 10.1152/jn.00783.2009. Epub 2009 Nov 4.
4
Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection.
J Neurosci. 2009 Oct 21;29(42):13410-7. doi: 10.1523/JNEUROSCI.2592-09.2009.
5
Learning sculpts the spontaneous activity of the resting human brain.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63. doi: 10.1073/pnas.0902455106. Epub 2009 Oct 5.
6
Impact of working memory load on FMRI resting state pattern in subsequent resting phases.
PLoS One. 2009 Sep 25;4(9):e7198. doi: 10.1371/journal.pone.0007198.
7
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
8
Task-dependent organization of brain regions active during rest.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10841-6. doi: 10.1073/pnas.0903253106. Epub 2009 Jun 17.
9
The resting human brain and motor learning.
Curr Biol. 2009 Jun 23;19(12):1023-7. doi: 10.1016/j.cub.2009.04.028. Epub 2009 May 7.
10
Spontaneous local variations in ongoing neural activity bias perceptual decisions.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10984-9. doi: 10.1073/pnas.0712043105. Epub 2008 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验