Suppr超能文献

大脑在激活和静息状态下功能结构的对应关系。

Correspondence of the brain's functional architecture during activation and rest.

作者信息

Smith Stephen M, Fox Peter T, Miller Karla L, Glahn David C, Fox P Mickle, Mackay Clare E, Filippini Nicola, Watkins Kate E, Toro Roberto, Laird Angela R, Beckmann Christian F

机构信息

Centre for Functional MRI of the Brain, University of Oxford, Oxford OX3 9DU, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.

Abstract

Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."

摘要

神经连接为功能网络提供了基础,无论它们在任何给定时刻是否处于功能活跃状态,都是存在的。然而,当大脑“处于静息状态”时,脑区之间持续相互作用的程度尚不清楚。在这项研究中,我们通过对来自功能成像研究的BrainMap数据库的数千个单独激活图进行基于图像的激活网络分析,识别出主要的显性激活网络,该数据库涉及近30000名人类受试者。另外,我们提取了静息大脑中的主要共变网络,这是通过对36名静息状态下的受试者进行功能磁共振成像获得的。主要脑网络集及其分解为子网的情况表明,静息和激活脑动力学的独立分析之间存在密切对应关系。我们得出结论,大脑在活动时所使用的全部功能网络,即使在“静息”时也在持续且动态地“活跃”着。

相似文献

1
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
3
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
J Neurosci. 2017 Oct 25;37(43):10481-10497. doi: 10.1523/JNEUROSCI.0451-17.2017. Epub 2017 Sep 26.
4
Large-scale intrinsic connectivity is consistent across varying task demands.
PLoS One. 2019 Apr 10;14(4):e0213861. doi: 10.1371/journal.pone.0213861. eCollection 2019.
5
Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
Brain Connect. 2015 Jun;5(5):267-75. doi: 10.1089/brain.2014.0323. Epub 2015 Mar 24.
6
Changes in structural and functional connectivity among resting-state networks across the human lifespan.
Neuroimage. 2014 Nov 15;102 Pt 2:345-57. doi: 10.1016/j.neuroimage.2014.07.067. Epub 2014 Aug 7.
7
The extrinsic and intrinsic functional architectures of the human brain are not equivalent.
Cereb Cortex. 2013 Jan;23(1):223-9. doi: 10.1093/cercor/bhs010. Epub 2012 Jan 31.
9
Improved correspondence of resting-state networks after macroanatomical alignment.
Hum Brain Mapp. 2014 Feb;35(2):673-82. doi: 10.1002/hbm.22191. Epub 2012 Nov 14.
10
Behavioral interpretations of intrinsic connectivity networks.
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.

引用本文的文献

1
Distributed Cortical Network Dynamics of Binocular Convergent Eye Movements in Humans.
bioRxiv. 2025 Aug 21:2025.08.15.670412. doi: 10.1101/2025.08.15.670412.
3
Large-scale cortical functional networks are organized in structured cycles.
Nat Neurosci. 2025 Aug 27. doi: 10.1038/s41593-025-02052-8.
5
Time-varying synergy/redundancy dominance in the human cerebral cortex.
J Phys Complex. 2025 Mar 1;6(1):015015. doi: 10.1088/2632-072X/adbaa9. Epub 2025 Mar 14.
6
Functional connectivity profiles of amygdala subregions in posttraumatic stress disorder.
Transl Psychiatry. 2025 Aug 14;15(1):280. doi: 10.1038/s41398-025-03508-y.
7
Dynamic functional connectivity to tile the spatiotemporal mosaic of brain states.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00364. eCollection 2024.
8
Rest assured: Dynamic functional connectivity and the baseline state of the human brain.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00365. eCollection 2024.
9
Individual patterns of functional connectivity in neonates as revealed by surface-based Bayesian modeling.
Imaging Neurosci (Camb). 2025 Mar 20;3. doi: 10.1162/imag_a_00504. eCollection 2025.
10
Predicting task-related brain activity from resting-state brain dynamics with fMRI Transformer.
Imaging Neurosci (Camb). 2025 Jan 17;3. doi: 10.1162/imag_a_00440. eCollection 2025.

本文引用的文献

1
Decoding the large-scale structure of brain function by classifying mental States across individuals.
Psychol Sci. 2009 Nov;20(11):1364-72. doi: 10.1111/j.1467-9280.2009.02460.x. Epub 2009 Oct 30.
2
Lost in localization: the need for a universal coordinate database.
Neuroimage. 2009 Oct 15;48(1):1-7. doi: 10.1016/j.neuroimage.2009.01.053. Epub 2009 Feb 5.
3
Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14. doi: 10.1073/pnas.0811879106. Epub 2009 Apr 8.
4
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.
Neuroimage. 2009 Apr 15;45(3):810-23. doi: 10.1016/j.neuroimage.2008.12.039. Epub 2008 Dec 31.
5
Bayesian analysis of neuroimaging data in FSL.
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.
7
Functional coactivation map of the human brain.
Cereb Cortex. 2008 Nov;18(11):2553-9. doi: 10.1093/cercor/bhn014. Epub 2008 Feb 21.
8
Construction of a 3D probabilistic atlas of human cortical structures.
Neuroimage. 2008 Feb 1;39(3):1064-80. doi: 10.1016/j.neuroimage.2007.09.031. Epub 2007 Nov 26.
9
Resting-state networks in the infant brain.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6. doi: 10.1073/pnas.0704380104. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验