Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, D-17487 Greifswald, Germany.
Infect Immun. 2011 Jan;79(1):44-58. doi: 10.1128/IAI.00855-10. Epub 2010 Nov 15.
The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39Δgln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39Δgln0411/0412 showed only moderate but significant attenuation. In contrast, the D39Δgln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39Δgln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39Δgln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39Δgln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39Δgln1098/1099 and D39Δgln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
肺炎链球菌的基因组分析预测了六个可能的谷氨酰胺摄取系统,这些系统在体外条件下表达,如这里通过反转录-PCR 所示。这四个操纵子由 glnHPQ 组成,而另外两个缺乏编码可溶性谷氨酰胺结合蛋白的 glnH。在这里,我们研究了这两个谷氨酰胺 ATP 结合盒转运蛋白中的两个对肺炎链球菌 D39 毒力和吞噬作用的影响,它们由 GlnQ 和 GlnH 和 GlnP 的翻译融合蛋白组成。与感染 D39 的小鼠相比,感染 D39Δgln0411/0412 的小鼠的生存时间显著延长,并且肺炎的发展明显延迟,这是使用生物发光肺炎链球菌实时观察到的。在小鼠败血症模型中,突变体 D39Δgln0411/0412 表现出适度但显著的衰减。相比之下,D39Δgln1098/1099 敲除株在肺炎和败血症小鼠感染模型中大量衰减。使用 D39Δgln1098/1099 引起肺炎或败血症,需要比使用野生型 D39 菌株高 100 至 10,000 倍的感染剂量。在实验性小鼠脑膜炎模型中,与 D39 和 D39Δgln0411/0412 相比,D39Δgln1098/1099 在脑脊液中产生的白细胞水平降低,并且在血流中细菌数量减少。吞噬作用实验表明,与野生型 D39 相比,突变体 D39Δgln1098/1099 和 D39Δgln0411/0412 的细胞内存活率明显降低,表明谷氨酰胺摄取系统的缺乏会损害对氧化应激的抵抗力。总之,我们的结果表明,两种谷氨酰胺摄取系统都需要肺炎链球菌的完全毒力,但在体内条件下对肺炎链球菌的发病机制有不同的影响。