Department of Physiology, McGill University, Centre for Nonlinear Dynamics, Montreal, Québec, Canada.
PLoS Comput Biol. 2010 Nov 4;6(11):e1000975. doi: 10.1371/journal.pcbi.1000975.
Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.
许多生化网络的复杂性来自变构蛋白的信息处理能力,无论是受体、离子通道、信号分子还是转录因子。变构蛋白可以通过它结合的每个输入分子组合进行独特的调节。这种“调节复杂性”导致随着蛋白质相互作用数量的增加,拟合实验数据所需的参数数量呈组合式增加。因此,它对生化模型的创建、更新和再利用提出了挑战。在这里,我们提出了一种基于规则的建模框架,利用蛋白质结构的固有模块化来解决调节复杂性。我们不是将蛋白质视为“黑盒子”,而是对其层次结构进行建模,并对构象变化和内部动力学进行建模。通过对变构蛋白的调节进行这些构象变化建模,我们通常可以减少拟合数据所需的参数数量,从而减少过度拟合并提高模型的预测能力。我们的方法具有热力学基础,施加了详细的平衡,还包括分子串扰和酶的背景活性。我们使用变构网络编译器来研究变构作用如何促进大分子组装,以及竞争性配体如何改变变构蛋白的观察到的协同性。我们还开发了一种简洁的 G 蛋白偶联受体模型,该模型解释了功能选择性,并可以预测通过受体起作用的激动剂的效力顺序。我们的方法应该为系统和合成生物学中生化网络的可扩展、模块化和可执行建模提供基础。