Feret Jérôme, Danos Vincent, Krivine Jean, Harmer Russ, Fontana Walter
Harvard Medical School, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6453-8. doi: 10.1073/pnas.0809908106. Epub 2009 Apr 3.
Modelers of molecular signaling networks must cope with the combinatorial explosion of protein states generated by posttranslational modifications and complex formation. Rule-based models provide a powerful alternative to approaches that require explicit enumeration of all possible molecular species of a system. Such models consist of formal rules stipulating the (partial) contexts wherein specific protein-protein interactions occur. These contexts specify molecular patterns that are usually less detailed than molecular species. Yet, the execution of rule-based dynamics requires stochastic simulation, which can be very costly. It thus appears desirable to convert a rule-based model into a reduced system of differential equations by exploiting the granularity at which rules specify interactions. We present a formal (and automated) method for constructing a coarse-grained and self-consistent dynamical system aimed at molecular patterns that are distinguishable by the dynamics of the original system as posited by the rules. The method is formally sound and never requires the execution of the rule-based model. The coarse-grained variables do not depend on the values of the rate constants appearing in the rules, and typically form a system of greatly reduced dimension that can be amenable to numerical integration and further model reduction techniques.
分子信号网络的建模者必须应对由翻译后修饰和复合物形成所产生的蛋白质状态的组合爆炸问题。基于规则的模型为那些需要明确列举系统中所有可能分子种类的方法提供了一种强大的替代方案。此类模型由规定特定蛋白质 - 蛋白质相互作用发生的(部分)上下文的形式规则组成。这些上下文指定的分子模式通常比分子种类的细节程度更低。然而,基于规则的动力学执行需要随机模拟,这可能成本非常高。因此,通过利用规则指定相互作用的粒度,将基于规则的模型转换为简化的微分方程系统似乎是可取的。我们提出了一种形式化(且自动化)的方法,用于构建一个粗粒度且自洽的动力学系统,该系统针对的是由规则所设定的原始系统动力学可区分的分子模式。该方法在形式上是合理的,并且从不要求执行基于规则的模型。粗粒度变量不依赖于规则中出现的速率常数的值,并且通常形成一个维度大幅降低的系统,该系统适合进行数值积分以及进一步的模型简化技术处理。