Department of Chemistry, ISTM-CNR and INSTM, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
Chemphyschem. 2010 Dec 3;11(17):3625-31. doi: 10.1002/cphc.201000730.
The distinct optical emission from ZnO materials, nanoneedles and microcrystallites synthesized with different sizes and morphologies by a flow deposition technique, is investigated with X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) from a synchrotron light source at the O K and Zn L(3,2) edges. The innovative use of XEOL, allowing site-specific chemical information and luminescence information at the same time, is fundamental to provide direct evidence for the different behaviour and the crucial role of bulk and surface defects in the origin of ZnO optical emission, including dynamics. XEOL from highly crystalline ZnO nanoneedles is characterized by a sharp band-gap emission (380 nm) and a broad red luminescence (680 nm) related to surface defects. Luminescence from ZnO microcrystallites is mostly dominated by green emission (~510 nm) associated with defects in the core. TR-XEOL experiments show considerably faster decay dynamics in nanoneedles compared to microcrystallites for both band-gap emission and visible luminescence. Herein we make a fundamental step forward correlating for the first time the interplay of size, crystallinity, morphology and excitation energy with luminescence from ZnO materials.
采用流动沉积技术合成了不同尺寸和形态的 ZnO 纳米针和微晶,通过 X 射线激发光致发光(XEOL)和同步辐射光激发时间分辨光致发光(TR-XEOL)研究了其独特的光学发射。XEOL 的创新应用,允许在同一时间获得特定于位置的化学信息和发光信息,是提供直接证据的基础,证明了体相和表面缺陷在 ZnO 光学发射(包括动力学)中的不同行为和关键作用。高结晶 ZnO 纳米针的 XEOL 特征是带隙发射(380nm)的尖锐带和与表面缺陷有关的宽红发光(680nm)。ZnO 微晶的发光主要由与核心缺陷相关的绿光发射(~510nm)主导。TR-XEOL 实验表明,与微晶相比,纳米针的带隙发射和可见发光的衰减动力学快得多。在这里,我们迈出了重要的一步,首次将尺寸、结晶度、形态和激发能与 ZnO 材料的发光联系起来。