Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA.
Biophys J. 2010 Nov 17;99(10):3319-26. doi: 10.1016/j.bpj.2010.09.061.
Bipolar tetraether lipids (BTLs) are abundant in crenarchaeota, which thrive in both thermophilic and nonthermophilic environments, with wide-ranging growth temperatures (4-108°C). BTL liposomes can serve as membrane models to explore the role of BTLs in the thermal stability of the plasma membrane of crenarchaeota. In this study, we focus on the liposomes made of the polar lipid fraction E (PLFE). PLFE is one of the main BTLs isolated from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Using molecular acoustics (ultrasound velocimetry and densimetry), pressure perturbation calorimetry, and differential scanning calorimetry, we have determined partial specific adiabatic and isothermal compressibility, their respective compressibility coefficients, partial specific volume, and relative volume fluctuations of PLFE large unilamellar vesicles (LUVs) over a wide range of temperatures (20-85°C). The results are compared with those obtained from liposomes made of dipalmitoyl-L-α-phosphatidylcholine (DPPC), a conventional monopolar diester lipid. We found that, in the entire temperature range examined, compressibilities of PLFE LUVs are low, comparable to those found in gel state of DPPC. Relative volume fluctuations of PLFE LUVs at any given temperature examined are 1.6-2.2 times more damped than those found in DPPC LUVs. Both compressibilities and relative volume fluctuations in PLFE LUVs are much less temperature-sensitive than those in DPPC liposomes. The isothermal compressibility coefficient (β(T)(lipid)) of PLFE LUVs changes from 3.59 × 10(-10) Pa(-1) at 25°C to 4.08 × 10(-10) Pa(-1) at 78°C. Volume fluctuations of PLFE LUVs change only 0.25% from 30°C to 80°C. The highly damped volume fluctuations and their low temperature sensitivity, echo that PLFE liposomes are rigid and tightly packed. To our knowledge, the data provide a deeper understanding of lipid packing in PLFE liposomes than has been previously reported, as well as a molecular explanation for the low solute permeation and limited membrane lateral motion. The obtained results may help to establish new strategies for rational design of stable BTL-based liposomes for drug/vaccine delivery.
双极性四醚脂类 (BTLs) 在泉古菌中大量存在,这些微生物能够在高温和非高温环境中生长,具有广泛的生长温度范围(4-108°C)。BTL 脂质体可以作为膜模型,用于探索 BTLs 在泉古菌质膜热稳定性中的作用。在这项研究中,我们专注于由极性脂质部分 E (PLFE) 制成的脂质体。PLFE 是从嗜热嗜酸古菌 Sulfolobus acidocaldarius 中分离出的主要 BTL 之一。使用分子声学(超声速度和密度测量法)、压力微扰量热法和差示扫描量热法,我们在很宽的温度范围内(20-85°C)测定了 PLFE 大单室囊泡(LUV)的比定压和等温绝热压缩系数、相应的压缩系数、比容和相对体积波动。结果与由二棕榈酰-L-α-磷脂酰胆碱 (DPPC) 制成的脂质体进行了比较,DPPC 是一种传统的单极性二酯脂质。我们发现,在所研究的整个温度范围内,PLFE LUV 的压缩系数较低,与 DPPC 的凝胶态相似。在任何给定温度下,PLFE LUV 的相对体积波动比 DPPC LUV 的体积波动阻尼大 1.6-2.2 倍。PLFE LUV 的压缩系数和相对体积波动对温度的敏感性都远低于 DPPC 脂质体。PLFE LUV 的等温压缩系数 (β(T)(lipid)) 从 25°C 的 3.59×10(-10) Pa(-1) 变化到 78°C 的 4.08×10(-10) Pa(-1)。PLFE LUV 的体积波动仅从 30°C 到 80°C 变化 0.25%。高度阻尼的体积波动及其对温度的低敏感性表明 PLFE 脂质体刚性且紧密堆积。据我们所知,这些数据比以前的报道提供了对 PLFE 脂质体中脂质堆积的更深入了解,以及对溶质渗透和有限的膜横向运动的分子解释。所获得的结果可能有助于为基于 BTL 的脂质体的药物/疫苗输送建立新的稳定策略。