Suppr超能文献

功能模式和残基柔性控制鸟苷酸激酶对机械应力的各向异性响应。

Functional modes and residue flexibility control the anisotropic response of guanylate kinase to mechanical stress.

机构信息

Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique, CNRS UPR9080, Paris, France.

出版信息

Biophys J. 2010 Nov 17;99(10):3412-9. doi: 10.1016/j.bpj.2010.09.026.

Abstract

The coupling between the mechanical properties of enzymes and their biological activity is a well-established feature that has been the object of numerous experimental and theoretical works. In particular, recent experiments show that enzymatic function can be modulated anisotropically by mechanical stress. We study such phenomena using a method for investigating local flexibility on the residue scale that combines a reduced protein representation with Brownian dynamics simulations. We performed calculations on the enzyme guanylate kinase to study its mechanical response when submitted to anisotropic deformations. The resulting modifications of the protein's rigidity profile can be related to the changes in substrate binding affinity observed experimentally. Further analysis of the principal components of motion of the trajectories shows how the application of a mechanical constraint on the protein can disrupt its dynamics, thus leading to a decrease of the enzyme's catalytic rate. Eventually, a systematic probe of the protein surface led to the prediction of potential hotspots where the application of an external constraint would produce a large functional response both from the mechanical and dynamical points of view. Such enzyme-engineering approaches open the possibility to tune catalytic function by varying selected external forces.

摘要

酶的机械性能与其生物活性之间的耦合是一个既定的特征,已经成为许多实验和理论工作的对象。特别是,最近的实验表明,机械应力可以各向异性地调节酶的功能。我们使用一种在残基尺度上研究局部柔性的方法来研究这种现象,该方法将简化的蛋白质表示与布朗动力学模拟相结合。我们对鸟苷酸激酶进行了计算,以研究其在各向异性变形下的机械响应。蛋白质刚性分布的这种变化可以与实验观察到的底物结合亲和力的变化相关联。对轨迹的主要运动分量的进一步分析表明,在蛋白质上施加机械约束如何破坏其动力学,从而导致酶的催化速率降低。最终,对蛋白质表面的系统探测导致预测了潜在的热点,在这些热点施加外部约束将从力学和动力学的角度产生很大的功能响应。这种酶工程方法为通过改变选定的外部力来调节催化功能提供了可能性。

相似文献

2
Enzyme closure and nucleotide binding structurally lock guanylate kinase.
Biophys J. 2011 Sep 21;101(6):1440-9. doi: 10.1016/j.bpj.2011.07.048. Epub 2011 Sep 20.
3
Guanylate kinase, induced fit, and the allosteric spring probe.
Biophys J. 2007 Mar 1;92(5):1651-8. doi: 10.1529/biophysj.106.092866. Epub 2006 Dec 1.
4
Cracking phase diagram for the dynamics of an enzyme.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041915. doi: 10.1103/PhysRevE.86.041915. Epub 2012 Oct 24.
5
Dissipation at the angstrom scale: Probing the surface and interior of an enzyme.
Phys Rev E. 2018 May;97(5-1):052402. doi: 10.1103/PhysRevE.97.052402.
7
Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme.
PLoS One. 2014 Jul 7;9(7):e101442. doi: 10.1371/journal.pone.0101442. eCollection 2014.
8
Viscoelastic transition and yield strain of the folded protein.
PLoS One. 2011;6(12):e28097. doi: 10.1371/journal.pone.0028097. Epub 2011 Dec 8.
9
Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase.
Proteins. 2006 Feb 1;62(2):489-500. doi: 10.1002/prot.20662.
10
Investigating the local flexibility of functional residues in hemoproteins.
Biophys J. 2006 Apr 15;90(8):2706-17. doi: 10.1529/biophysj.105.074997. Epub 2006 Jan 20.

引用本文的文献

2
Wordom update 2: A user-friendly program for the analysis of molecular structures and conformational ensembles.
Comput Struct Biotechnol J. 2023 Jan 27;21:1390-1402. doi: 10.1016/j.csbj.2023.01.026. eCollection 2023.
7
Great interactions: How binding incorrect partners can teach us about protein recognition and function.
Proteins. 2016 Oct;84(10):1408-21. doi: 10.1002/prot.25086. Epub 2016 Jun 24.
8
Cutoff lensing: predicting catalytic sites in enzymes.
Sci Rep. 2015 Oct 8;5:14874. doi: 10.1038/srep14874.

本文引用的文献

1
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
2
Elastic energy of protein-DNA chimeras.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061912. doi: 10.1103/PhysRevE.80.061912. Epub 2009 Dec 17.
3
Understanding biology by stretching proteins: recent progress.
Curr Opin Struct Biol. 2010 Feb;20(1):63-9. doi: 10.1016/j.sbi.2010.01.003. Epub 2010 Feb 6.
4
Discovery through the computational microscope.
Structure. 2009 Oct 14;17(10):1295-306. doi: 10.1016/j.str.2009.09.001.
5
Force and function: probing proteins with AFM-based force spectroscopy.
Curr Opin Struct Biol. 2009 Oct;19(5):605-14. doi: 10.1016/j.sbi.2009.09.005. Epub 2009 Oct 12.
6
Multiscale modeling of proteins.
Acc Chem Res. 2010 Feb 16;43(2):220-30. doi: 10.1021/ar9001476.
7
Protein elastic network models and the ranges of cooperativity.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12347-52. doi: 10.1073/pnas.0902159106. Epub 2009 Jul 14.
8
Controlling proteins through molecular springs.
Annu Rev Biophys. 2009;38:75-88. doi: 10.1146/annurev.biophys.050708.133637.
9
Modeling the mechanical response of proteins to anisotropic deformation.
Chemphyschem. 2009 Jan 12;10(1):115-8. doi: 10.1002/cphc.200800480.
10
Mechanoenzymatics of titin kinase.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90. doi: 10.1073/pnas.0805034105. Epub 2008 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验