Department of Chemistry, Islamic Azad University, Science and Research Branch, Young Researchers Club, Tehran, Iran.
J Sep Sci. 2010 Dec;33(23-24):3800-10. doi: 10.1002/jssc.201000448.
The main aim of this study was the development of a quantitative structure-property relationship method using an artificial neural network (ANN) for predicting the water-to-wet butyl acetate partition coefficients of organic solutes. As a first step, a genetic algorithm-multiple linear regression model was developed; the descriptors appearing in this model were considered as inputs for the ANN. These descriptors are principal moment of inertia C (I(C)), area-weighted surface charge of hydrogen-bonding donor atoms (HACA-2), Kier and Hall index (order 2) ((2)χ), Balaban index (J), minimum bond order of a C atom (P(C)) and relative negative-charged SA (RNCS). Then a 6-4-1 neural network was generated for the prediction of water-to-wet butyl acetate partition coefficients of 76 organic solutes. By comparing the results obtained from multiple linear regression and ANN models, it can be seen that statistical parameters (Fisher ratio, correlation coefficient and standard error) of the ANN model are better than that regression model, which indicates that nonlinear model can simulate the relationship between the structural descriptors and the partition coefficients of the investigated molecules more accurately.
本研究的主要目的是开发一种使用人工神经网络(ANN)的定量结构-性质关系方法,用于预测有机溶质的水-湿乙酸丁酯分配系数。作为第一步,开发了遗传算法-多元线性回归模型;该模型中的描述符被视为 ANN 的输入。这些描述符是惯性主矩 C(I(C))、氢键供体原子的面积加权表面电荷(HACA-2)、Kier 和 Hall 指数(阶 2)((2)χ)、Balaban 指数(J)、C 原子的最小键序(P(C))和相对带负电荷的 SA(RNCS)。然后,为预测 76 种有机溶质的水-湿乙酸丁酯分配系数生成了一个 6-4-1 神经网络。通过比较多元线性回归和 ANN 模型得到的结果,可以看出 ANN 模型的统计参数(Fisher 比、相关系数和标准误差)优于回归模型,这表明非线性模型可以更准确地模拟结构描述符与所研究分子的分配系数之间的关系。