细胞培养基对蛋白-纳米颗粒复合物动态形成的影响及其对细胞反应的影响。
Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.
机构信息
Italian Institute of Technology, Center for Bio-Molecular Nanotechnology, Via Barsanti-73010 Arnesano, Lecce, Italy.
出版信息
ACS Nano. 2010 Dec 28;4(12):7481-91. doi: 10.1021/nn101557e. Epub 2010 Nov 17.
The development of appropriate in vitro protocols to assess the potential toxicity of the ever expanding range of nanoparticles represents a challenging issue, because of the rapid changes of their intrinsic physicochemical properties (size, shape, reactivity, surface area, etc.) upon dispersion in biological fluids. Dynamic formation of protein coating around nanoparticles is a key molecular event, which may strongly impact the biological response in nanotoxicological tests. In this work, by using citrate-capped gold nanoparticles (AuNPs) of different sizes as a model, we show, by several spectroscopic techniques (dynamic light scattering, UV-visible, plasmon resonance light scattering), that proteins-NP interactions are differently mediated by two widely used cellular media (i.e., Dulbecco Modified Eagle's medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), supplemented with fetal bovine serum). We found that, while DMEM elicits the formation of a large time-dependent protein corona, RPMI shows different dynamics with reduced protein coating. Characterization of these nanobioentities was also performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectroscopy, revealing that the average composition of protein corona does not reflect the relative abundance of serum proteins. To evaluate the biological impact of such hybrid bionanostructures, several comparative viability assays onto two cell lines (HeLa and U937) were carried out in the two media, in the presence of 15 nm AuNPs. We observed that proteins/NP complexes formed in RPMI are more abundantly internalized in cells as compared to DMEM, overall exerting higher cytotoxic effects. These results show that, beyond an in-depth NPs characterization before cellular experiments, a detailed understanding of the effects elicited by cell culture media on NPs is crucial for standardized nanotoxicology tests.
开发适当的体外方案来评估不断扩展的纳米粒子范围的潜在毒性是一个具有挑战性的问题,因为它们在生物流体中的内在物理化学性质(尺寸、形状、反应性、表面积等)会迅速变化。纳米粒子周围蛋白质涂层的动态形成是一个关键的分子事件,它可能会强烈影响纳米毒理学测试中的生物学反应。在这项工作中,我们使用不同尺寸的柠檬酸封端金纳米粒子(AuNPs)作为模型,通过几种光谱技术(动态光散射、紫外-可见、等离子体共振光散射)表明,蛋白质与 NP 的相互作用是由两种广泛使用的细胞培养基(即 DMEM 和 RPMI,补充有胎牛血清)不同地介导的。我们发现,虽然 DMEM 会引发大的、依赖时间的蛋白质冠形成,但 RPMI 显示出不同的动力学,蛋白质涂层减少。通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳和质谱对这些纳米生物实体进行了表征,结果表明,蛋白质冠的平均组成并不能反映血清蛋白的相对丰度。为了评估这些混合生物纳米结构的生物学影响,我们在两种培养基中对两种细胞系(HeLa 和 U937)进行了几种比较存活率测定,存在 15nm AuNPs。我们观察到,在 RPMI 中形成的蛋白质/NP 复合物在细胞内的摄取量比在 DMEM 中更多,总体上产生更高的细胞毒性作用。这些结果表明,除了在细胞实验前对 NPs 进行深入的表征外,详细了解细胞培养基对 NPs 产生的影响对于标准化的纳米毒理学测试至关重要。