Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dubli , Belfield, Dublin, Ireland.
J Am Chem Soc. 2011 Mar 2;133(8):2525-34. doi: 10.1021/ja107583h. Epub 2011 Feb 2.
It is now clearly emerging that besides size and shape, the other primary defining element of nanoscale objects in biological media is their long-lived protein ("hard") corona. This corona may be expressed as a durable, stabilizing coating of the bare surface of nanoparticle (NP) monomers, or it may be reflected in different subpopulations of particle assemblies, each presenting a durable protein coating. Using the approach and concepts of physical chemistry, we relate studies on the composition of the protein corona at different plasma concentrations with structural data on the complexes both in situ and free from excess plasma. This enables a high degree of confidence in the meaning of the hard protein corona in a biological context. Here, we present the protein adsorption for two compositionally different NPs, namely sulfonated polystyrene and silica NPs. NP-protein complexes are characterized by differential centrifugal sedimentation, dynamic light scattering, and zeta-potential both in situ and once isolated from plasma as a function of the protein/NP surface area ratio. We then introduce a semiquantitative determination of their hard corona composition using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray liquid chromatography mass spectrometry, which allows us to follow the total binding isotherms for the particles, identifying simultaneously the nature and amount of the most relevant proteins as a function of the plasma concentration. We find that the hard corona can evolve quite significantly as one passes from protein concentrations appropriate to in vitro cell studies to those present in in vivo studies, which has deep implications for in vitro-in vivo extrapolations and will require some consideration in the future.
现在已经清楚地表明,除了大小和形状之外,生物介质中纳米尺度物体的另一个主要定义特征是其具有长寿命的蛋白质(“硬”)冠。这种冠可以表示为纳米颗粒(NP)单体裸露表面的持久稳定涂层,也可以反映在不同的粒子组装亚群中,每个亚群都呈现出持久的蛋白质涂层。我们使用物理化学的方法和概念,将不同等离子体浓度下蛋白质冠组成的研究与复合物的结构数据相关联,这些复合物无论是在原位还是从过量等离子体中分离出来,都呈现出不同的结构数据。这使得我们在生物环境中对硬蛋白质冠的含义有了高度的信心。在这里,我们展示了两种组成不同的 NP(即磺化聚苯乙烯和二氧化硅 NP)的蛋白质吸附情况。NP-蛋白质复合物的特征是通过差速离心沉淀、动态光散射和zeta 电位在原位和从等离子体中分离出来作为蛋白质/NP 表面积比的函数进行分析。然后,我们使用一维十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和电喷雾液相色谱-质谱联用技术对其硬冠组成进行了半定量测定,这使我们能够跟踪粒子的总结合等温线,同时识别出最相关蛋白质的性质和数量作为等离子体浓度的函数。我们发现,当我们从适合体外细胞研究的蛋白质浓度过渡到体内研究中存在的蛋白质浓度时,硬冠可以发生相当大的变化,这对体外-体内外推有深远的影响,并且在未来需要加以考虑。