Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-7518, USA.
ACS Nano. 2010 Dec 28;4(12):7205-10. doi: 10.1021/nn101902r. Epub 2010 Nov 17.
Unlike single-C(60)-based devices, molecular assemblies based on two or more appropriately connected C(60) molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C(60) molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C(60), as in the case of a single-C(60)-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C(60) molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C(60)-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors.
与基于单个 C(60) 的器件不同,由两个或更多适当连接的 C(60) 分子组成的分子组装体有可能表现出负微分电阻 (NDR)。在这项工作中,我们使用基于密度泛函理论的非平衡格林函数技术评估了由通过烷烃链连接的两个 C(60) 分子构建的分子器件的电子输运性质。我们发现,这些系统中的电子传导是由 C(60) 的最低未占据分子轨道 (LUMO) 介导的,就像基于单个 C(60) 的器件一样。然而,由于 LUMO 的位置被固定在各自电极的化学势上,它们的相对对准随施加的偏压而移动,并在非常低的偏压下导致 NDR。此外,NDR 的位置和幅度可以通过 C(60) 分子的化学修饰来调节。附加分子的作用是移动 LUMO 的位置并打破正向和反向电流之间的对称性。通过改变烷烃连接体的长度也可以控制 NDR 特性。基于 C(60) 的分子电子组件的灵活性和丰富性为设计分子器件和化学传感器指明了一条有前途的潜在途径。