Center for Advanced Bionanosystems and School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
Phys Chem Chem Phys. 2011 Jan 28;13(4):1413-8. doi: 10.1039/c0cp00828a. Epub 2010 Dec 9.
A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.
采用非平衡格林函数方法,基于 TRANSIESTA 软件包,对具有环氧对链(ZGO)的锯齿型石墨烯纳米带(ZGNRs)进行了理论研究。主要通过不同自旋方向的偏压依赖透射谱来评估其电子输运性质。结果表明,石墨烯氧化物可以表现出负微分电阻(NDR)现象,这得到了不同自旋方向的偏压依赖透射谱的支持。施加非零偏压会导致右电极的态密度(DOS)向下移动。由于 ZGO 中 LUMO 和 LUMO+1 之间存在能隙,在一定的偏压下,右电极的导带无法与散射区的 LUMO 匹配,从而产生 NDR。随着偏压的增大,当右电极 DOS 的第二导带覆盖散射区的 LUMO 时,NDR 结束。由于大多数提出的 ZGO 体系在 LUMO 和 LUMO+1 之间都存在这样的能隙,因此可以广泛观察到 NDR,这一发现可能为基于 NDR 的纳米电子学提供了利用改性石墨烯材料的巨大应用潜力。