Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington D.C. 20375, USA.
ACS Nano. 2010 Dec 28;4(12):7253-66. doi: 10.1021/nn1021346. Epub 2010 Nov 17.
The unique properties provided by hybrid semiconductor quantum dot (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor.
杂交半导体量子点 (QD) 生物缀合物提供的独特性质继续激发了许多应用的兴趣,从生物传感到能量收集。了解这些复合材料的结构和功能是其发展的重要组成部分。在这里,我们比较了使用两种常见自组装化学方法将 DNA 附着到 QD 上所产生的结构。将修饰为显示末端生物素或寡组氨酸肽序列的 DNA 分别组装到链霉亲和素/两亲聚合物或 PEG 功能化的 QD 上。一系列互补的受体染料标记的 DNA 与每个 QD 构型中 DNA 的不同位置杂交,并通过Förster 共振能量转移 (FRET) 探测 QD 供体与每个染料受体之间的分离距离。多组氨酸自组装产生了 QD-DNA 生物缀合物,其中预测的和实验的分离距离相当吻合。尽管显示出有效的 FRET,但使用生物素-链霉亲和素化学组装的 QD-DNA 生物缀合物的数据与任何预测的分离距离都不匹配。基于已知的 QD 和 DNA 结构以及链接化学和 FRET 衍生的距离的建模用于模拟每个 QD-DNA 结构,并深入了解基础结构。尽管显示出一些旋转自由度,但用多组氨酸修饰的 DNA 组装到 QD 上,其结构从 QD-PEG 表面伸出,如预测的那样。相比之下,QD 表面上链霉亲和素的随机取向导致 DNA 相对于 QD 具有各种可能的取向,而在组装过程中无法控制。这些结果表明,如果需要特定的 QD 生物复合材料结构,例如随机与定向,那么所使用的生物缀合化学类型将是一个关键的影响因素。