Suppr超能文献

用于构建机械性能强且血管反应性良好的血管中膜的毛囊衍生平滑肌细胞和小肠黏膜下层。

Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media.

机构信息

Department of Chemical and Biological Engineering, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, New York 14260-4200, USA.

出版信息

Tissue Eng Part A. 2011 Apr;17(7-8):981-90. doi: 10.1089/ten.tea.2010.0109. Epub 2011 Jan 16.

Abstract

Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation.

摘要

我们实验室最近报道了一种新的平滑肌细胞(SMCs)来源,即毛囊(HF)间充质干细胞。HF-SMCs 表现出高增殖和克隆形成潜力以及收缩功能。在这项研究中,我们旨在使用 HF-SMC 和天然生物材料,即小肠黏膜下层(SIS)来构建血管中层。构建功能性血管结构需要施加机械力,从而导致肌动蛋白重组和细胞排列。反过来,细胞排列对于受体和非受体介导的收缩性的发展是必要的,这在细胞接种后 24 小时内就发生了。在培养的 2 周内,细胞迁移到 SIS 中,并分泌胶原蛋白和弹性蛋白,这是血管壁的两个主要细胞外基质成分。在 2 周时,血管反应性显著增加了 3 到 5 倍,机械性能与天然绵羊动脉相似。总之,我们的数据表明,HF-SMC 与 SIS 的结合产生了机械强度高、生物学功能强的血管中层,具有动脉植入的潜力。

相似文献

1
2
Contractile smooth muscle cells derived from hair-follicle stem cells.
Cardiovasc Res. 2008 Jul 1;79(1):24-33. doi: 10.1093/cvr/cvn059. Epub 2008 Mar 3.
3
Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells.
Tissue Eng Part A. 2010 Aug;16(8):2553-64. doi: 10.1089/ten.TEA.2009.0833.
4
Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model.
J Surg Res. 2011 Nov;171(1):e21-6. doi: 10.1016/j.jss.2011.08.001. Epub 2011 Aug 27.
7
SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties.
Acta Biomater. 2019 Nov;99:181-195. doi: 10.1016/j.actbio.2019.08.015. Epub 2019 Aug 22.
8
Engineering of the human vessel wall with hair follicle stem cells in vitro.
Mol Med Rep. 2017 Jan;15(1):417-422. doi: 10.3892/mmr.2016.6013. Epub 2016 Dec 9.
9
Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering.
Biomaterials. 2011 Feb;32(5):1317-26. doi: 10.1016/j.biomaterials.2010.10.006. Epub 2010 Nov 4.
10
Acellular blood vessels combined human hair follicle mesenchymal stem cells for engineering of functional arterial grafts.
Ann Biomed Eng. 2014 Oct;42(10):2177-89. doi: 10.1007/s10439-014-1061-1. Epub 2014 Jul 15.

引用本文的文献

1
Extracellular Matrix Profiling and Disease Modelling in Engineered Vascular Smooth Muscle Cell Tissues.
Matrix Biol Plus. 2022 Sep 17;16:100122. doi: 10.1016/j.mbplus.2022.100122. eCollection 2022 Dec.
2
Intravenous Transplantation of Human Hair Follicle-Derived Mesenchymal Stem Cells Ameliorates Trabecular Bone Loss in Osteoporotic Mice.
Front Cell Dev Biol. 2022 Mar 10;10:814949. doi: 10.3389/fcell.2022.814949. eCollection 2022.
4
Hair Follicle Stem Cells for Tissue Regeneration.
Tissue Eng Part B Rev. 2022 Aug;28(4):695-706. doi: 10.1089/ten.TEB.2021.0098. Epub 2021 Oct 18.
6
Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response.
FASEB J. 2019 Apr;33(4):5089-5100. doi: 10.1096/fj.201801856R. Epub 2019 Jan 10.
7
Rapid Self-Assembly of Bioengineered Cardiovascular Bypass Grafts From Scaffold-Stabilized, Tubular Bilevel Cell Sheets.
Circulation. 2018 Nov 6;138(19):2130-2144. doi: 10.1161/CIRCULATIONAHA.118.035231.
10
Arterial graft with elastic layer structure grown from cells.
Sci Rep. 2017 Mar 10;7(1):140. doi: 10.1038/s41598-017-00237-1.

本文引用的文献

1
Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells.
Tissue Eng Part A. 2010 Aug;16(8):2553-64. doi: 10.1089/ten.TEA.2009.0833.
4
Development of decellularized human umbilical arteries as small-diameter vascular grafts.
Tissue Eng Part A. 2009 Sep;15(9):2665-76. doi: 10.1089/ten.tea.2008.0526.
5
Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.
Am J Physiol Cell Physiol. 2008 Sep;295(3):C768-78. doi: 10.1152/ajpcell.00174.2008. Epub 2008 Jul 2.
6
More than one way to skin . .
Genes Dev. 2008 Apr 15;22(8):976-85. doi: 10.1101/gad.1645908.
7
Contractile smooth muscle cells derived from hair-follicle stem cells.
Cardiovasc Res. 2008 Jul 1;79(1):24-33. doi: 10.1093/cvr/cvn059. Epub 2008 Mar 3.
8
Functional tissue-engineered blood vessels from bone marrow progenitor cells.
Cardiovasc Res. 2007 Aug 1;75(3):618-28. doi: 10.1016/j.cardiores.2007.04.018. Epub 2007 May 4.
9
Blood vessels engineered from human cells.
Trends Cardiovasc Med. 2006 Jul;16(5):153-6. doi: 10.1016/j.tcm.2006.02.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验