University of Nebraska Medical Center, Department of Ophthalmology and Visual Sciences, 4050 Durham Research Center, Omaha, NE 68198-5840, USA.
J Neurophysiol. 2011 Jan;105(1):321-35. doi: 10.1152/jn.00332.2010. Epub 2010 Nov 17.
Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca(2+) channels, which are in turn regulated by Cl(-) moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca(2+) channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca(2+) buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca(2+) channels. Comparing Cl(Ca) currents with predicted Ca(2+) diffusion profiles suggested that Cl(Ca) and Ca(2+) channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca(2+) channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration (Ca(2+)) elevation through flash photolysis of DM-nitrophen exhibited EC(50) values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane Ca(2+) in photoreceptor terminals. Consistent with control of exocytosis by [Ca(2+)] nanodomains near Ca(2+) channels, average submembrane Ca(2+) remained below the vesicle release threshold (∼ 400 nM) over much of the physiological voltage range for cones. Positioning Ca(2+) channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca(2+) influx at one site to influence relatively distant Ca(2+) channels.
从光感受器带状突触释放囊泡受 L 型钙 (Ca2+) 通道调节,而这些通道又受通过钙激活氯离子 [Cl(Ca)] 通道移动的氯离子调节。我们通过比较快速 (BAPTA) 和慢速 (EGTA) 细胞内 Ca2+ 缓冲剂,评估了光感受器 Ca2+ 通道与突触末梢 Cl(Ca) 通道的接近程度。BAPTA 不完全阻断突触释放,表明一些释放位点距离 Ca2+ 通道 <100nm。将 Cl(Ca) 电流与预测的 Ca2+ 扩散分布进行比较表明,Cl(Ca) 和 Ca2+ 通道平均相距几百纳米,但 BAPTA 不能完全阻断 Cl(Ca) 电流,表明一些通道的距离更近。用 TMEM16A 抗体对末梢进行弥散免疫标记,支持 Cl(Ca) 通道弥散分布于突触前末梢的观点,与 Ca2+ 通道在带状物附近聚集形成对比。通过 DM-硝基苯的光解使细胞内钙离子浓度 ([Ca2+]i) 升高而诱发的 Cl(Ca) 电流在视杆和视锥细胞中分别表现出 556 和 377nM 的 EC50 值和 1.8 和 2.4 的 Hill 斜率。这些关系用于估计光感受器末梢的平均亚膜 [Ca2+]i。与 Ca2+ 通道附近的 [Ca2+] 纳米区控制胞吐作用一致,在视锥细胞的大部分生理电压范围内,平均亚膜 [Ca2+]i 仍低于囊泡释放阈值 (∼400nM)。将 Ca2+ 通道定位于释放位点附近可能会提高将电压变化转换为突触释放的准确性。Cl(Ca) 通道的弥散分布可能允许一个位点的 Ca2+ 内流影响相对较远的 Ca2+ 通道。