Suppr超能文献

视网膜中视杆和视锥带突触的传递。

Transmission at rod and cone ribbon synapses in the retina.

机构信息

Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

出版信息

Pflugers Arch. 2021 Sep;473(9):1469-1491. doi: 10.1007/s00424-021-02548-9. Epub 2021 Mar 29.

Abstract

Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca channel activity. While the opening of only a few Ca channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.

摘要

光激发的脊椎动物视网膜中的视杆和视锥光感受器细胞的电压响应必须转换为一连串的突触囊泡释放事件,以便向下游神经元传递。这篇综述讨论了塑造视觉这一关键早期步骤的过程、蛋白质和结构,重点是来自蝾螈视网膜的研究,并与其他实验动物进行了比较。许多机制在物种间是保守的。在锥体中,谷氨酸的释放仅限于带状释放部位,尽管杆状细胞也能够在非带状部位释放。在杆状细胞中,非带状释放的作用仍不清楚。突触带中的释放涉及至少三个囊泡池:与带状基底上的膜相关囊泡数量相匹配的易释放池 (RRP)、与带状上的额外囊泡数量相匹配的带状储备池以及巨大的细胞质储备池。囊泡释放与 Ca 通道活性平行增加。虽然每个带状物下方只有几个 Ca 通道的开放可以触发单个囊泡的融合,但在黑暗中的持续释放速率受 RRP 补充的速率控制。空释放位点的数量、它们的功能状态以及囊泡的传递速率反过来又控制着补充。除了对胞吐作用和胞吞作用机制的概述外,我们还考虑了与带状相关的蛋白质的特定性质,并提出了关于视觉系统中这个第一个突触的许多悬而未决的问题。

相似文献

1
Transmission at rod and cone ribbon synapses in the retina.
Pflugers Arch. 2021 Sep;473(9):1469-1491. doi: 10.1007/s00424-021-02548-9. Epub 2021 Mar 29.
2
Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.
Eur J Neurosci. 2016 Aug;44(3):2015-27. doi: 10.1111/ejn.13288. Epub 2016 Jun 22.
3
Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.
J Gen Physiol. 2014 Nov;144(5):357-78. doi: 10.1085/jgp.201411229. Epub 2014 Oct 13.
7
Calcium channel-dependent molecular maturation of photoreceptor synapses.
PLoS One. 2013 May 13;8(5):e63853. doi: 10.1371/journal.pone.0063853. Print 2013.
9
Vesicle pool size at the salamander cone ribbon synapse.
J Neurophysiol. 2010 Jan;103(1):419-23. doi: 10.1152/jn.00718.2009. Epub 2009 Nov 18.
10
Kinetics of synaptic transmission at ribbon synapses of rods and cones.
Mol Neurobiol. 2007 Dec;36(3):205-23. doi: 10.1007/s12035-007-0019-9. Epub 2007 Jul 10.

引用本文的文献

2
Rod Inputs Arrive at Horizontal Cell Somas in Mouse Retina Solely via Rod-Cone Coupling.
eNeuro. 2025 Jun 6;12(6). doi: 10.1523/ENEURO.0427-24.2025. Print 2025 Jun.
3
The architecture of invaginating rod synapses slows glutamate diffusion and shapes synaptic responses.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413746. Epub 2025 Feb 28.
5
Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse.
Adv Exp Med Biol. 2025;1468:325-330. doi: 10.1007/978-3-031-76550-6_54.
7
Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells.
Adv Mater. 2025 Jan;37(3):e2413981. doi: 10.1002/adma.202413981. Epub 2024 Nov 3.
8
Short-term plasticity and context-dependent circuit function: Insights from retinal circuitry.
Sci Adv. 2024 Sep 20;10(38):eadp5229. doi: 10.1126/sciadv.adp5229.
9
The role of syntaxins in retinal function and health.
Front Cell Neurosci. 2024 May 10;18:1380064. doi: 10.3389/fncel.2024.1380064. eCollection 2024.

本文引用的文献

5
Direct Observation of Vesicle Transport on the Synaptic Ribbon Provides Evidence That Vesicles Are Mobilized and Prepared Rapidly for Release.
J Neurosci. 2020 Sep 23;40(39):7390-7404. doi: 10.1523/JNEUROSCI.0605-20.2020. Epub 2020 Aug 26.
7
Defects of full-length dystrophin trigger retinal neuron damage and synapse alterations by disrupting functional autophagy.
Cell Mol Life Sci. 2021 Feb;78(4):1615-1636. doi: 10.1007/s00018-020-03598-5. Epub 2020 Aug 4.
8
Elevated energy requirement of cone photoreceptors.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19599-19603. doi: 10.1073/pnas.2001776117. Epub 2020 Jul 27.
9
Mature Retina Compensates Functionally for Partial Loss of Rod Photoreceptors.
Cell Rep. 2020 Jun 9;31(10):107730. doi: 10.1016/j.celrep.2020.107730.
10
Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14493-14502. doi: 10.1073/pnas.2000265117. Epub 2020 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验