文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过靶向肠道 M 细胞增强口服疫苗效力。

Enhancing oral vaccine potency by targeting intestinal M cells.

机构信息

Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.

出版信息

PLoS Pathog. 2010 Nov 11;6(11):e1001147. doi: 10.1371/journal.ppat.1001147.


DOI:10.1371/journal.ppat.1001147
PMID:21085599
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2978714/
Abstract

The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.

摘要

胃肠道中的免疫系统在控制感染方面起着至关重要的作用,因为它是抵御黏膜病原体的第一道防线。口服免疫的诱人特点促使人们探索了各种口服递送系统。然而,这些口服递送系统都没有应用于现有的商业疫苗。为了克服这一难题,需要开发新一代针对肠道相关淋巴组织的抗原的口服疫苗递送系统。一种很有前途的方法是通过模拟病原体进入这些细胞的方式来利用微褶皱(M)细胞的潜力。针对 M 细胞顶表面上的特定受体可能会增强抗原的进入,从而引发免疫反应,最终对黏膜病原体产生保护作用。本文简要回顾了当前口服疫苗递送系统所面临的挑战,并讨论了可能针对小鼠和人肠道 M 细胞的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/136b/2978714/5102cca0fe4c/ppat.1001147.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/136b/2978714/5102cca0fe4c/ppat.1001147.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/136b/2978714/5102cca0fe4c/ppat.1001147.g001.jpg

相似文献

[1]
Enhancing oral vaccine potency by targeting intestinal M cells.

PLoS Pathog. 2010-11-11

[2]
Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization.

Curr Drug Targets. 2020

[3]
Roles of M cells in infection and mucosal vaccines.

Hum Vaccin Immunother. 2014

[4]
[Oral vaccination and vaccine-entrapped microparticle delivery system].

Yao Xue Xue Bao. 2007-3

[5]
Designing oral vaccines targeting intestinal dendritic cells.

Expert Opin Drug Deliv. 2011-3-5

[6]
Advancedoral vaccine delivery strategies for improving the immunity.

Adv Drug Deliv Rev. 2021-10

[7]
Lectins and microparticles for enhanced oral vaccination.

Methods. 2006-2

[8]
Delivery strategies to enhance oral vaccination against enteric infections.

Adv Drug Deliv Rev. 2015-3-25

[9]
Apical membrane receptors on intestinal M cells: potential targets for vaccine delivery.

Adv Drug Deliv Rev. 2004-4-19

[10]
M cell targeting engineered biomaterials for effective vaccination.

Biomaterials. 2018-11-12

引用本文的文献

[1]
as an Effective Mucosal Vaccination Carrier: a Systematic Literature Review.

J Microbiol Biotechnol. 2025-3-7

[2]
Glycosylated SARs Cov 2 interaction with plant lectins.

Glycoconj J. 2024-6

[3]
Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis.

Biomolecules. 2024-1-8

[4]
Mannose-specific plant and microbial lectins as antiviral agents: A review.

Glycoconj J. 2024-2

[5]
Expression of FimH Enhances Trafficking of an Orally Delivered Vaccine to Immune Inductive Sites via Antigen-Presenting Cells.

Vaccines (Basel). 2023-6-27

[6]
Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy.

Nanomicro Lett. 2023-6-3

[7]
Mucosal delivery of nanovaccine strategy against COVID-19 and its variants.

Acta Pharm Sin B. 2022-11-21

[8]
Commensal gut microbiota-based strategies for oral delivery of therapeutic proteins.

Trends Pharmacol Sci. 2022-12

[9]
Trafficking and retention of protein antigens across systems and immune cell types.

Cell Mol Life Sci. 2022-5-3

[10]
Oral drug delivery for immunoengineering.

Bioeng Transl Med. 2021-8-10

本文引用的文献

[1]
Innovative bioinformatic approaches for developing peptide-based vaccines against hypervariable viruses.

Immunol Cell Biol. 2010-5-11

[2]
Mucosal HIV vaccines: a holy grail or a dud?

Vaccine. 2010-4-20

[3]
Comparative efficacy of influenza vaccines.

N Engl J Med. 2010-1-14

[4]
Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response.

Nature. 2009-11-12

[5]
A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity.

J Immunol. 2009-11-15

[6]
Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model.

Biochem Biophys Res Commun. 2009-10-29

[7]
Enhancing efficacy and mucosa-tropic distribution of an oral HIV-PsV DNA vaccine in animal models.

J Drug Target. 2009-12

[8]
Seasonal influenza vaccines.

Curr Top Microbiol Immunol. 2009

[9]
Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin.

PLoS One. 2009-9-16

[10]
Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B-ESAT6 fusion protein.

Vaccine. 2009-11-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索