Suppr超能文献

重测序研究中关联测试的进化框架。

An evolutionary framework for association testing in resequencing studies.

机构信息

Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Genet. 2010 Nov 11;6(11):e1001202. doi: 10.1371/journal.pgen.1001202.

Abstract

Sequencing technologies are becoming cheap enough to apply to large numbers of study participants and promise to provide new insights into human phenotypes by bringing to light rare and previously unknown genetic variants. We develop a new framework for the analysis of sequence data that incorporates all of the major features of previously proposed approaches, including those focused on allele counts and allele burden, but is both more general and more powerful. We harness population genetic theory to provide prior information on effect sizes and to create a pooling strategy for information from rare variants. Our method, EMMPAT (Evolutionary Mixed Model for Pooled Association Testing), generates a single test per gene (substantially reducing multiple testing concerns), facilitates graphical summaries, and improves the interpretation of results by allowing calculation of attributable variance. Simulations show that, relative to previously used approaches, our method increases the power to detect genes that affect phenotype when natural selection has kept alleles with large effect sizes rare. We demonstrate our approach on a population-based re-sequencing study of association between serum triglycerides and variation in ANGPTL4.

摘要

测序技术变得足够廉价,可以应用于大量的研究参与者,并有望通过揭示罕见和以前未知的遗传变异,为人类表型提供新的见解。我们开发了一种新的序列数据分析框架,它结合了以前提出的方法的所有主要特征,包括专注于等位基因计数和等位基因负担的方法,但更具普遍性和更强的功能。我们利用群体遗传理论来提供关于效应大小的先验信息,并为来自罕见变异的信息创建一个汇集策略。我们的方法,即 EMMPAT(用于合并关联测试的进化混合模型),为每个基因生成一个单一的测试(大大减少了多重测试的问题),便于图形汇总,并通过允许计算可归因方差来改善结果的解释。模拟表明,与以前使用的方法相比,当自然选择使具有大效应大小的等位基因变得罕见时,我们的方法增加了检测影响表型的基因的能力。我们在一项基于人群的 ANGPTL4 血清甘油三酯与变异之间关联的重测序研究中展示了我们的方法。

相似文献

1
An evolutionary framework for association testing in resequencing studies.
PLoS Genet. 2010 Nov 11;6(11):e1001202. doi: 10.1371/journal.pgen.1001202.
2
A generalized genetic random field method for the genetic association analysis of sequencing data.
Genet Epidemiol. 2014 Apr;38(3):242-53. doi: 10.1002/gepi.21790. Epub 2014 Jan 30.
3
Association studies for next-generation sequencing.
Genome Res. 2011 Jul;21(7):1099-108. doi: 10.1101/gr.115998.110. Epub 2011 Apr 26.
4
A fast and noise-resilient approach to detect rare-variant associations with deep sequencing data for complex disorders.
Genet Epidemiol. 2012 Nov;36(7):675-85. doi: 10.1002/gepi.21662. Epub 2012 Aug 3.
5
Detecting rare variant effects using extreme phenotype sampling in sequencing association studies.
Genet Epidemiol. 2013 Feb;37(2):142-51. doi: 10.1002/gepi.21699. Epub 2012 Nov 26.
7
A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.
Bioinformatics. 2014 Aug 15;30(16):2317-23. doi: 10.1093/bioinformatics/btu207. Epub 2014 Apr 22.
9
Resequencing of pooled DNA for detecting disease associations with rare variants.
Genet Epidemiol. 2010 Jul;34(5):492-501. doi: 10.1002/gepi.20502.
10
Design of association studies with pooled or un-pooled next-generation sequencing data.
Genet Epidemiol. 2010 Jul;34(5):479-91. doi: 10.1002/gepi.20501.

引用本文的文献

1
Integration of eQTL and GWAS analysis uncovers a genetic regulation of natural ionomic variation in Arabidopsis.
Plant Cell Rep. 2023 Sep;42(9):1473-1485. doi: 10.1007/s00299-023-03042-5. Epub 2023 Jul 30.
2
Evolutionary perspectives on polygenic selection, missing heritability, and GWAS.
Hum Genet. 2020 Jan;139(1):5-21. doi: 10.1007/s00439-019-02040-6. Epub 2019 Jun 14.
3
The impact of rare and low-frequency genetic variants in common disease.
Genome Biol. 2017 Apr 27;18(1):77. doi: 10.1186/s13059-017-1212-4.
4
Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants.
Genome Res. 2016 Jul;26(7):863-73. doi: 10.1101/gr.202440.115. Epub 2016 May 18.
5
Prevalence estimation for monogenic autosomal recessive diseases using population-based genetic data.
Hum Genet. 2015 Jun;134(6):659-69. doi: 10.1007/s00439-015-1551-8. Epub 2015 Apr 19.
6
Population genetic simulations of complex phenotypes with implications for rare variant association tests.
Genet Epidemiol. 2015 Jan;39(1):35-44. doi: 10.1002/gepi.21866. Epub 2014 Nov 21.
7
GWAS to Sequencing: Divergence in Study Design and Analysis.
Genes (Basel). 2014 May 28;5(2):460-76. doi: 10.3390/genes5020460.
8
Multiple comparisons in genetic association studies: a hierarchical modeling approach.
Stat Appl Genet Mol Biol. 2014 Feb;13(1):35-48. doi: 10.1515/sagmb-2012-0040.
9
Evaluating empirical bounds on complex disease genetic architecture.
Nat Genet. 2013 Dec;45(12):1418-27. doi: 10.1038/ng.2804. Epub 2013 Oct 20.
10
A stochastic inference of de novo CNV detection and association test in multiplex schizophrenia families.
Front Genet. 2013 Sep 23;4:185. doi: 10.3389/fgene.2013.00185. eCollection 2013.

本文引用的文献

1
Analysis of genetic inheritance in a family quartet by whole-genome sequencing.
Science. 2010 Apr 30;328(5978):636-9. doi: 10.1126/science.1186802. Epub 2010 Mar 10.
2
The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation.
Curr Biol. 2010 Feb 23;20(4):R208-15. doi: 10.1016/j.cub.2009.11.055.
3
Evolution in health and medicine Sackler colloquium: Genetic architecture of a complex trait and its implications for fitness and genome-wide association studies.
Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1(Suppl 1):1752-6. doi: 10.1073/pnas.0906182107. Epub 2010 Jan 19.
4
Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data.
PLoS Genet. 2009 Oct;5(10):e1000695. doi: 10.1371/journal.pgen.1000695. Epub 2009 Oct 23.
5
Finding the missing heritability of complex diseases.
Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
6
Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence.
PLoS Genet. 2009 Aug;5(8):e1000592. doi: 10.1371/journal.pgen.1000592. Epub 2009 Aug 7.
7
Parkinson's disease and low frequency alleles found together throughout LRRK2.
Ann Hum Genet. 2009 Jul;73(Pt 4):391-403. doi: 10.1111/j.1469-1809.2009.00524.x. Epub 2009 May 21.
8
Discovery of rare variants via sequencing: implications for the design of complex trait association studies.
PLoS Genet. 2009 May;5(5):e1000481. doi: 10.1371/journal.pgen.1000481. Epub 2009 May 15.
9
Signals of recent positive selection in a worldwide sample of human populations.
Genome Res. 2009 May;19(5):826-37. doi: 10.1101/gr.087577.108. Epub 2009 Mar 23.
10
Darwinian and demographic forces affecting human protein coding genes.
Genome Res. 2009 May;19(5):838-49. doi: 10.1101/gr.088336.108. Epub 2009 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验