Suppr超能文献

利用测序关联研究中的极端表型抽样检测罕见变异效应。

Detecting rare variant effects using extreme phenotype sampling in sequencing association studies.

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Genet Epidemiol. 2013 Feb;37(2):142-51. doi: 10.1002/gepi.21699. Epub 2012 Nov 26.

Abstract

In the increasing number of sequencing studies aimed at identifying rare variants associated with complex traits, the power of the test can be improved by guided sampling procedures. We confirm both analytically and numerically that sampling individuals with extreme phenotypes can enrich the presence of causal rare variants and can therefore lead to an increase in power compared to random sampling. Although application of traditional rare variant association tests to these extreme phenotype samples requires dichotomizing the continuous phenotypes before analysis, the dichotomization procedure can decrease the power by reducing the information in the phenotypes. To avoid this, we propose a novel statistical method based on the optimal Sequence Kernel Association Test that allows us to test for rare variant effects using continuous phenotypes in the analysis of extreme phenotype samples. The increase in power of this method is demonstrated through simulation of a wide range of scenarios as well as in the triglyceride data of the Dallas Heart Study.

摘要

在越来越多的旨在识别与复杂性状相关的罕见变异的测序研究中,可以通过有针对性的采样程序来提高检验的功效。我们通过分析和数值模拟都证实,对具有极端表型的个体进行采样可以富集因果罕见变异的存在,因此与随机采样相比,可以提高检验功效。虽然将传统的罕见变异关联检验应用于这些极端表型样本时,需要在分析前将连续表型进行二分,但是二分过程会通过减少表型中的信息而降低检验功效。为避免这种情况,我们提出了一种基于最优序列核关联检验的新统计方法,该方法允许我们在分析极端表型样本时,使用连续表型来检验罕见变异的效应。通过模拟广泛的场景以及达拉斯心脏研究中的甘油三酯数据,证明了该方法提高了检验功效。

相似文献

1
Detecting rare variant effects using extreme phenotype sampling in sequencing association studies.
Genet Epidemiol. 2013 Feb;37(2):142-51. doi: 10.1002/gepi.21699. Epub 2012 Nov 26.
2
A fast and noise-resilient approach to detect rare-variant associations with deep sequencing data for complex disorders.
Genet Epidemiol. 2012 Nov;36(7):675-85. doi: 10.1002/gepi.21662. Epub 2012 Aug 3.
3
A generalized genetic random field method for the genetic association analysis of sequencing data.
Genet Epidemiol. 2014 Apr;38(3):242-53. doi: 10.1002/gepi.21790. Epub 2014 Jan 30.
4
A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.
Bioinformatics. 2014 Aug 15;30(16):2317-23. doi: 10.1093/bioinformatics/btu207. Epub 2014 Apr 22.
5
A weighted U-statistic for genetic association analyses of sequencing data.
Genet Epidemiol. 2014 Dec;38(8):699-708. doi: 10.1002/gepi.21864. Epub 2014 Oct 20.
7
Association studies for next-generation sequencing.
Genome Res. 2011 Jul;21(7):1099-108. doi: 10.1101/gr.115998.110. Epub 2011 Apr 26.
8
An evolutionary framework for association testing in resequencing studies.
PLoS Genet. 2010 Nov 11;6(11):e1001202. doi: 10.1371/journal.pgen.1001202.
9
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
10
Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.
Genet Epidemiol. 2011 Dec;35(8):790-9. doi: 10.1002/gepi.20628. Epub 2011 Sep 15.

引用本文的文献

1
Transcriptomic signatures of rare variant impacts across sex and the X chromosome.
HGG Adv. 2025 May 31;6(3):100463. doi: 10.1016/j.xhgg.2025.100463.
3
Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags.
Am J Hum Genet. 2024 Nov 7;111(11):2478-2493. doi: 10.1016/j.ajhg.2024.09.008. Epub 2024 Oct 22.
4
Low-frequency inherited complement receptor variants are associated with purpura fulminans.
Blood. 2024 Mar 14;143(11):1032-1044. doi: 10.1182/blood.2023021231.
7
Towards a global view of multiple sclerosis genetics.
Nat Rev Neurol. 2022 Oct;18(10):613-623. doi: 10.1038/s41582-022-00704-y. Epub 2022 Sep 8.
8
Rare Genetic Variants Associated With Myocardial Fibrosis: Multi-Ethnic Study of Atherosclerosis.
Front Cardiovasc Med. 2022 Feb 21;9:804788. doi: 10.3389/fcvm.2022.804788. eCollection 2022.
9
Genomic architecture of phenotypic extremes in a wild cervid.
BMC Genomics. 2022 Feb 12;23(1):126. doi: 10.1186/s12864-022-08333-x.

本文引用的文献

2
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
3
Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.
Genet Epidemiol. 2011 Dec;35(8):790-9. doi: 10.1002/gepi.20628. Epub 2011 Sep 15.
4
Exome sequencing: the expert view.
Genome Biol. 2011 Sep 14;12(9):128. doi: 10.1186/gb-2011-12-9-128.
5
Comparison of statistical tests for disease association with rare variants.
Genet Epidemiol. 2011 Nov;35(7):606-19. doi: 10.1002/gepi.20609. Epub 2011 Jul 18.
6
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
7
Testing for an unusual distribution of rare variants.
PLoS Genet. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.pgen.1001322. Epub 2011 Mar 3.
8
Statistical analysis strategies for association studies involving rare variants.
Nat Rev Genet. 2010 Nov;11(11):773-85. doi: 10.1038/nrg2867. Epub 2010 Oct 13.
9
Uncovering the roles of rare variants in common disease through whole-genome sequencing.
Nat Rev Genet. 2010 Jun;11(6):415-25. doi: 10.1038/nrg2779.
10
Pooled association tests for rare variants in exon-resequencing studies.
Am J Hum Genet. 2010 Jun 11;86(6):832-8. doi: 10.1016/j.ajhg.2010.04.005. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验