Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
PLoS One. 2010 Nov 11;5(11):e13953. doi: 10.1371/journal.pone.0013953.
Metabolomics is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in a biological fluid. However, no single analytic technique covers the entire spectrum of the human metabolome. Here we present results from a multiplatform study, in which we investigate what kind of results can presently be obtained in the field of diabetes research when combining metabolomics data collected on a complementary set of analytical platforms in the framework of an epidemiological study.
METHODOLOGY/PRINCIPAL FINDINGS: 40 individuals with self-reported diabetes and 60 controls (male, over 54 years) were randomly selected from the participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg) study, representing an extensively phenotyped sample of the general German population. Concentrations of over 420 unique small molecules were determined in overnight-fasting blood using three different techniques, covering nuclear magnetic resonance and tandem mass spectrometry. Known biomarkers of diabetes could be replicated by this multiple metabolomic platform approach, including sugar metabolites (1,5-anhydroglucoitol), ketone bodies (3-hydroxybutyrate), and branched chain amino acids. In some cases, diabetes-related medication can be detected (pioglitazone, salicylic acid).
CONCLUSIONS/SIGNIFICANCE: Our study depicts the promising potential of metabolomics in diabetes research by identification of a series of known and also novel, deregulated metabolites that associate with diabetes. Key observations include perturbations of metabolic pathways linked to kidney dysfunction (3-indoxyl sulfate), lipid metabolism (glycerophospholipids, free fatty acids), and interaction with the gut microflora (bile acids). Our study suggests that metabolic markers hold the potential to detect diabetes-related complications already under sub-clinical conditions in the general population.
代谢组学是一个快速发展的领域,旨在全面测量生物体液中理想的所有内源性代谢物。然而,没有单一的分析技术能够涵盖人类代谢组的全部范围。在这里,我们展示了一项多平台研究的结果,即在一项流行病学研究的框架内,结合在一组互补分析平台上收集的代谢组学数据,我们研究了当组合使用时目前在糖尿病研究领域可以获得什么样的结果。
方法/主要发现:从基于人群的 KORA(奥格斯堡合作健康研究)研究的参与者中随机选择了 40 名有自我报告糖尿病的个体和 60 名对照者(男性,年龄超过 54 岁),代表了德国一般人群中广泛表型的样本。使用三种不同的技术(包括核磁共振和串联质谱)在 overnight-fasting 血液中测定了超过 420 种独特小分子的浓度。这种多代谢组学平台方法可以复制包括糖代谢物(1,5-脱水葡萄糖醇)、酮体(3-羟基丁酸)和支链氨基酸在内的糖尿病的已知生物标志物。在某些情况下,可以检测到与糖尿病相关的药物(吡格列酮、水杨酸)。
结论/意义:我们的研究通过鉴定与糖尿病相关的一系列已知和新的失调代谢物,描绘了代谢组学在糖尿病研究中的有前景的潜力。关键观察包括与肾功能障碍(3-吲哚硫酸酯)、脂质代谢(甘油磷脂、游离脂肪酸)和与肠道微生物群相互作用(胆汁酸)相关的代谢途径的扰动。我们的研究表明,代谢标志物有可能在一般人群中已经在亚临床条件下检测到与糖尿病相关的并发症。