Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA.
Biotechnol J. 2011 Jan;6(1):66-73. doi: 10.1002/biot.201000240.
Globally, one of the major technologic goals is to achieve cost-effective lignocellulosic ethanol production from biomass feedstocks. Lignocellulosic biomass of four dedicated energy crops [giant reed (Arundo donax L.), elephantgrass (Pennisetum purpureum (Schumach), Miscanthus × giganteus (Illinois clone), and (clone Q42641) {hybrid of Miscanthus sinensis Anderss. and Miscanthus sacchariflorus (Maxim)}, Hack. called giant miscanthus, and sugarcane clone US 84-1028 (Saccharum L. spp. hybrid)] and residues from two crops [soybean (Glycine max (L.) Merr.) litter and rice (Oryza sativa L.) husk] were tested for bioethanol production using cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and enzymatic (cellulase) hydrolysis. Giant miscanthus (Illinois), giant reed, giant miscanthus (Q42641), elephantgrass, and sugarcane all yielded higher amount of glucose on a biomass dry weight basis (0.290-0.331 g/g), than did rice husk (0.181 g/g) and soybean litter (0.186 g/g). To reduce the capital investment for energy consumption in fermentation, we used a self-flocculating yeast strain (SPSC01) to ferment the lignocellulosic biomass hydrolysates. Bioethanol production was ∼0.1 g/g in dedicated energy crops and less in two crop residues. These methods and data can help to develop a cost-effective downstream process for bioethanol production.
从全球范围来看,主要的技术目标之一是实现具有成本效益的木质纤维素乙醇生产,其原料来自生物质。我们用纤维素溶剂型木质纤维素分级(CSLF)预处理和酶(纤维素酶)水解法,对四种专用能源作物(巨蔺[Arundo donax L.]、象草[Pennisetum purpureum (Schumach]、杂交狼尾草[Miscanthus × giganteus (Illinois 无性系)]和[杂交芒[Miscanthus sinensis Anderss. 和 Miscanthus sacchariflorus (Maxim)],称为巨型狼尾草]、甘蔗无性系 US 84-1028(Saccharum L. spp. 杂种))和两种作物(大豆[Glycine max (L.) Merr.]残余物和稻壳[Oryza sativa L.])的残渣进行了生物乙醇生产测试。以生物质干重计,巨型狼尾草(伊利诺伊州)、巨蔺、巨型狼尾草(Q42641)、象草和甘蔗的葡萄糖产量均高于稻壳(0.181 g/g)和大豆残余物(0.186 g/g)。为了降低发酵过程中能源消耗的资本投入,我们使用了自絮凝酵母菌株(SPSC01)发酵木质纤维素生物质水解物。专用能源作物的生物乙醇产量约为 0.1 g/g,两种作物残渣的产量则较低。这些方法和数据有助于开发具有成本效益的生物乙醇生产下游工艺。