Suppr超能文献

一种稀疏的术中数据驱动的生物力学模型,用于补偿神经导航期间的脑移位。

A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation.

机构信息

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai Neurosurgical Center, PR China.

出版信息

AJNR Am J Neuroradiol. 2011 Feb;32(2):395-402. doi: 10.3174/ajnr.A2288. Epub 2010 Nov 18.

Abstract

BACKGROUND AND PURPOSE

Intraoperative brain deformation is an important factor compromising the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a model-updated image in the compensation of intraoperative brain shift.

MATERIALS AND METHODS

An FE linear elastic model was built and evaluated in 11 patients with craniotomies. To build this model, we provided a novel model-guided segmentation algorithm. After craniotomy, the sparse intraoperative data (the deformed cortical surface) were tracked by a 3D LRS. The surface deformation, calculated by an extended RPM algorithm, was applied on the FE model as a boundary condition to estimate the entire brain shift. The compensation accuracy of this model was validated by the real-time image data of brain deformation acquired by intraoperative MR imaging.

RESULTS

The prediction error of this model ranged from 1.29 to 1.91 mm (mean, 1.62 ± 0.22 mm), and the compensation accuracy ranged from 62.8% to 81.4% (mean, 69.2 ± 5.3%). The compensation accuracy on the displacement of subcortical structures was higher than that of deep structures (71.3 ± 6.1%:66.8 ± 5.0%, P < .01). In addition, the compensation accuracy in the group with a horizontal bone window was higher than that in the group with a nonhorizontal bone window (72.0 ± 5.3%:65.7 ± 2.9%, P < .05).

CONCLUSIONS

Combined with our novel model-guided segmentation and extended RPM algorithms, this sparse data-driven biomechanical model is expected to be a reliable, efficient, and convenient approach for compensation of intraoperative brain shift in image-guided surgery.

摘要

背景与目的

术中脑变形是影响影像引导神经外科手术精度的重要因素。本研究旨在阐明模型更新图像在补偿术中脑移位中的作用。

材料与方法

对 11 例行开颅术的患者进行了 FE 线性弹性模型的构建和评估。为了构建该模型,我们提供了一种新的模型引导分割算法。开颅术后,稀疏的术中数据(变形的皮质表面)通过 3D LRS 进行跟踪。通过扩展 RPM 算法计算的表面变形被应用于 FE 模型作为边界条件,以估计整个脑移位。通过术中磁共振成像获得的实时脑变形图像数据验证了该模型的补偿精度。

结果

该模型的预测误差范围为 1.29 至 1.91 毫米(平均值为 1.62 ± 0.22 毫米),补偿精度范围为 62.8%至 81.4%(平均值为 69.2 ± 5.3%)。皮质下结构的位移补偿精度高于深部结构(71.3 ± 6.1%:66.8 ± 5.0%,P <.01)。此外,具有水平骨窗的组的补偿精度高于具有非水平骨窗的组(72.0 ± 5.3%:65.7 ± 2.9%,P <.05)。

结论

结合我们新的模型引导分割和扩展 RPM 算法,这种稀疏数据驱动的生物力学模型有望成为影像引导手术中补偿术中脑移位的可靠、高效、方便的方法。

相似文献

1
A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation.
AJNR Am J Neuroradiol. 2011 Feb;32(2):395-402. doi: 10.3174/ajnr.A2288. Epub 2010 Nov 18.
2
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1753-64. doi: 10.1007/s11548-015-1216-z. Epub 2015 May 10.
3
A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection.
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):75-85. doi: 10.1007/s11548-019-02057-2. Epub 2019 Aug 23.
4
Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.
Neurosurgery. 2000 Nov;47(5):1070-9; discussion 1079-80. doi: 10.1097/00006123-200011000-00008.
5
Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation.
Med Image Anal. 2017 Aug;40:133-153. doi: 10.1016/j.media.2017.06.003. Epub 2017 Jun 15.
6
Serial registration of intraoperative MR images of the brain.
Med Image Anal. 2002 Dec;6(4):337-59. doi: 10.1016/s1361-8415(02)00060-9.
7
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1467-74. doi: 10.1007/s11548-015-1295-x. Epub 2015 Oct 17.
9
A method for the assessment of time-varying brain shift during navigated epilepsy surgery.
Int J Comput Assist Radiol Surg. 2016 Mar;11(3):473-81. doi: 10.1007/s11548-015-1259-1. Epub 2015 Jul 17.
10

引用本文的文献

1
Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery.
Int J Biomed Imaging. 2017;2017:6028645. doi: 10.1155/2017/6028645. Epub 2017 Jun 5.
2
Android application for determining surgical variables in brain-tumor resection procedures.
J Med Imaging (Bellingham). 2017 Jan;4(1):015003. doi: 10.1117/1.JMI.4.1.015003. Epub 2017 Mar 2.
3
Intraoperative image updating for brain shift following dural opening.
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.
4
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1467-74. doi: 10.1007/s11548-015-1295-x. Epub 2015 Oct 17.
5
Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.
Ann Biomed Eng. 2016 Jan;44(1):128-38. doi: 10.1007/s10439-015-1433-1. Epub 2015 Sep 9.
6
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
IEEE J Transl Eng Health Med. 2014 Apr 30;2. doi: 10.1109/JTEHM.2014.2327628.
8
Preliminary study of a novel method for conveying corrected image volumes in surgical navigation.
Int J Med Robot. 2013 Mar;9(1):109-18. doi: 10.1002/rcs.1459. Epub 2012 Sep 18.
9
Special surgical considerations for functional brain mapping.
Neurosurg Clin N Am. 2011 Apr;22(2):111-32, vii. doi: 10.1016/j.nec.2011.01.004.

本文引用的文献

2
A robust brain deformation framework based on a finite element model in IGNS.
Int J Med Robot. 2008 Jun;4(2):146-57. doi: 10.1002/rcs.186.
3
A comprehensive system for intraoperative 3D brain deformation recovery.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):553-61. doi: 10.1007/978-3-540-75759-7_67.
4
Brain shift computation using a fully nonlinear biomechanical model.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):583-90. doi: 10.1007/11566489_72.
5
Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements.
IEEE Trans Med Imaging. 2005 Nov;24(11):1479-91. doi: 10.1109/TMI.2005.855434.
6
Stereopsis-guided brain shift compensation.
IEEE Trans Med Imaging. 2005 Aug;24(8):1039-52. doi: 10.1109/TMI.2005.852075.
7
Assimilating intraoperative data with brain shift modeling using the adjoint equations.
Med Image Anal. 2005 Jun;9(3):281-93. doi: 10.1016/j.media.2004.12.003.
8
Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients.
Radiology. 2004 Oct;233(1):67-78. doi: 10.1148/radiol.2331031352. Epub 2004 Aug 18.
9
Intraoperative imaging using a mobile computed tomography scanner.
Minim Invasive Neurosurg. 2003 Dec;46(6):317-22. doi: 10.1055/s-2003-812496.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验