Suppr超能文献

硬脑膜打开后脑移位的术中图像更新。

Intraoperative image updating for brain shift following dural opening.

机构信息

Thayer School of Engineering, and.

Geisel School of Medicine, Dartmouth College, Hanover.

出版信息

J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.

Abstract

OBJECTIVE Preoperative magnetic resonance images (pMR) are typically coregistered to provide intraoperative navigation, the accuracy of which can be significantly compromised by brain deformation. In this study, the authors generated updated MR images (uMR) in the operating room (OR) to compensate for brain shift due to dural opening, and evaluated the accuracy and computational efficiency of the process. METHODS In 20 open cranial neurosurgical cases, a pair of intraoperative stereovision (iSV) images was acquired after dural opening to reconstruct a 3D profile of the exposed cortical surface. The iSV surface was registered with pMR to detect cortical displacements that were assimilated by a biomechanical model to estimate whole-brain nonrigid deformation and produce uMR in the OR. The uMR views were displayed on a commercial navigation system and compared side by side with the corresponding coregistered pMR. A tracked stylus was used to acquire coordinate locations of features on the cortical surface that served as independent positions for calculating target registration errors (TREs) for the coregistered uMR and pMR image volumes. RESULTS The uMR views were visually more accurate and well aligned with the iSV surface in terms of both geometry and texture compared with pMR where misalignment was evident. The average misfit between model estimates and measured displacements was 1.80 ± 0.35 mm, compared with the average initial misfit of 7.10 ± 2.78 mm between iSV and pMR, and the average TRE was 1.60 ± 0.43 mm across the 20 patients in the uMR image volume, compared with 7.31 ± 2.82 mm on average in the pMR cases. The iSV also proved to be accurate with an average error of 1.20 ± 0.37 mm. The overall computational time required to generate the uMR views was 7-8 minutes. CONCLUSIONS This study compensated for brain deformation caused by intraoperative dural opening using computational model-based assimilation of iSV cortical surface displacements. The uMR proved to be more accurate in terms of model-data misfit and TRE in the 20 patient cases evaluated relative to pMR. The computational time was acceptable (7-8 minutes) and the process caused minimal interruption of surgical workflow.

摘要

目的

术前磁共振图像(pMR)通常进行配准以提供术中导航,但由于脑变形,其准确性可能会显著降低。在这项研究中,作者在手术室(OR)生成更新的磁共振图像(uMR)以补偿由于硬脑膜打开引起的脑移位,并评估了该过程的准确性和计算效率。

方法

在 20 例开颅神经外科手术中,在硬脑膜打开后获取一对术中立体视觉(iSV)图像,以重建暴露的皮质表面的 3D 轮廓。将 iSV 表面与 pMR 配准,以检测皮质位移,然后通过生物力学模型将这些位移同化,以估计整个大脑的非刚性变形,并在 OR 中生成 uMR。将 uMR 视图显示在商业导航系统上,并与相应的配准 pMR 并排比较。使用跟踪笔获取皮质表面上特征的坐标位置,这些位置用作计算配准 uMR 和 pMR 图像体积的目标注册误差(TRE)的独立位置。

结果

与 pMR 相比,uMR 视图在几何形状和纹理方面都更准确地与 iSV 表面对齐,而 pMR 中则明显存在错位。模型估计值与测量位移之间的平均不匹配为 1.80 ± 0.35mm,而 iSV 与 pMR 之间的平均初始不匹配为 7.10 ± 2.78mm,20 例患者的 uMR 图像体积的平均 TRE 为 1.60 ± 0.43mm,而 pMR 病例的平均 TRE 为 7.31 ± 2.82mm。iSV 的平均误差也证明为 1.20 ± 0.37mm,精度较高。生成 uMR 视图所需的总计算时间为 7-8 分钟。

结论

本研究使用基于计算模型的 iSV 皮质表面位移同化来补偿术中硬脑膜打开引起的脑变形。与 pMR 相比,在评估的 20 例患者中,uMR 在模型数据不匹配和 TRE 方面更准确。计算时间可接受(7-8 分钟),并且该过程对手术工作流程的干扰最小。

相似文献

1
Intraoperative image updating for brain shift following dural opening.
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.
3
Image Updating for Brain Shift Compensation During Resection.
Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.
4
5
Precise Brain-shift Prediction by New Combination of W-Net Deep Learning for Neurosurgical Navigation.
Neurol Med Chir (Tokyo). 2023 Jul 15;63(7):295-303. doi: 10.2176/jns-nmc.2022-0350. Epub 2023 May 11.
6
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1753-64. doi: 10.1007/s11548-015-1216-z. Epub 2015 May 10.
7
A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection.
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):75-85. doi: 10.1007/s11548-019-02057-2. Epub 2019 Aug 23.
8
Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration.
Med Image Anal. 2014 Oct;18(7):1169-83. doi: 10.1016/j.media.2014.07.001. Epub 2014 Jul 9.
9
Hand-Held Stereovision System for Image Updating in Open Spine Surgery.
Oper Neurosurg (Hagerstown). 2020 Sep 15;19(4):461-470. doi: 10.1093/ons/opaa057.
10
Patient Registration Using Intraoperative Stereovision in Image-guided Open Spinal Surgery.
IEEE Trans Biomed Eng. 2015 Sep;62(9):2177-86. doi: 10.1109/TBME.2015.2415731. Epub 2015 Mar 26.

引用本文的文献

1
Advances of MR imaging in glioma: what the neurosurgeon needs to know.
Acta Neurochir (Wien). 2025 Jun 21;167(1):174. doi: 10.1007/s00701-025-06593-6.
3
Porcine-human glioma xenograft model. Immunosuppression and model reproducibility.
Cancer Treat Res Commun. 2024;38:100789. doi: 10.1016/j.ctarc.2024.100789. Epub 2024 Jan 13.
4
Model-based image updating in deep brain stimulation with assimilation of deep brain sparse data.
Med Phys. 2023 Dec;50(12):7904-7920. doi: 10.1002/mp.16578. Epub 2023 Jul 7.
5
Precise Brain-shift Prediction by New Combination of W-Net Deep Learning for Neurosurgical Navigation.
Neurol Med Chir (Tokyo). 2023 Jul 15;63(7):295-303. doi: 10.2176/jns-nmc.2022-0350. Epub 2023 May 11.
8
A Smarter Health through the Internet of Surgical Things.
Sensors (Basel). 2022 Jun 17;22(12):4577. doi: 10.3390/s22124577.
9
Development of Innovative Neurosurgical Operation Support Method Using Mixed-Reality Computer Graphics.
World Neurosurg X. 2021 Mar 13;11:100102. doi: 10.1016/j.wnsx.2021.100102. eCollection 2021 Jul.
10
Model-Based Image Updating for Brain Shift in Deep Brain Stimulation Electrode Placement Surgery.
IEEE Trans Biomed Eng. 2020 Dec;67(12):3542-3552. doi: 10.1109/TBME.2020.2990669. Epub 2020 Nov 19.

本文引用的文献

1
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
IEEE J Transl Eng Health Med. 2014 Apr 30;2. doi: 10.1109/JTEHM.2014.2327628.
2
Efficient stereo image geometrical reconstruction at arbitrary camera settings from a single calibration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):440-7. doi: 10.1007/978-3-319-10404-1_55.
4
Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration.
Med Image Anal. 2014 Oct;18(7):1169-83. doi: 10.1016/j.media.2014.07.001. Epub 2014 Jul 9.
5
More accurate neuronavigation data provided by biomechanical modeling instead of rigid registration.
J Neurosurg. 2014 Jun;120(6):1477-83. doi: 10.3171/2013.12.JNS131165. Epub 2014 Jan 24.
6
A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation.
AJNR Am J Neuroradiol. 2011 Feb;32(2):395-402. doi: 10.3174/ajnr.A2288. Epub 2010 Nov 18.
7
Real-time prediction of brain shift using nonlinear finite element algorithms.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):300-7. doi: 10.1007/978-3-642-04271-3_37.
8
Estimation of brain deformation for volumetric image updating in protoporphyrin IX fluorescence-guided resection.
Stereotact Funct Neurosurg. 2010;88(1):1-10. doi: 10.1159/000258143. Epub 2009 Nov 12.
9
Brain-skull contact boundary conditions in an inverse computational deformation model.
Med Image Anal. 2009 Aug;13(4):659-72. doi: 10.1016/j.media.2009.05.007. Epub 2009 Jun 23.
10
Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias.
Neurosurgery. 2008 Mar;62(3):564-76; discussion 564-76. doi: 10.1227/01.neu.0000317304.31579.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验