Suppr超能文献

使用分子连接性指数建立的关于多种挥发性有机化合物在极性和非极性气相色谱固定相上的科瓦茨保留指数的QSRR模型。

QSRR Models for Kováts' Retention Indices of a Variety of Volatile Organic Compounds on Polar and Apolar GC Stationary Phases Using Molecular Connectivity Indexes.

作者信息

Ghavami Raouf, Faham Shadab

机构信息

Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.

出版信息

Chromatographia. 2010 Nov;72(9-10):893-903. doi: 10.1365/s10337-010-1741-4. Epub 2010 Sep 9.

Abstract

Quantitative structure-retention relationship (QSRR) approaches, based on molecular connectivity indices are useful to predict the gas chromatography of Kováts relative retention indices (GC-RRIs) of 132 volatile organic compounds (VOCs) on different 12 (4 apolar and 8 polar) stationary phases (C(67), C(103), C(78), C(∞), POH, TTF, MTF, PCL, PBR, TMO, PSH and PCN) at 130 °C. Full geometry optimization based on Austin model 1 semi-empirical molecular orbital method was carried out. The sets of 30 molecular descriptors were derived directly from the topological structures of the compounds from DRAGON program. By means of the final variable selection method, which is elimination selection stepwise regression algorithms, three optimal descriptors were selected to develop a QSRR model to predict the RRI of organic compounds on each stationary phase with a correlation coefficient between 0.9378 and 0.9673 and a leave-one-out cross-validation correlation coefficient between 0.9325 and 0.9653. The root mean squares errors over different 12 phases were within the range of 0.0333-0.0458. Furthermore, the accuracy of all developed models was confirmed using procedures of Y-randomization, external validation through an odd-even number and division of the entire dataset into training and test sets. A successful interpretation of the complex relationship between GC RRIs of VOCs and the chemical structures was achieved by QSRR. The three connectivity indexes in the models are also rationally interpreted, which indicated that all organic compounds' RRI was precisely represented by molecular connectivity indexes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1365/s10337-010-1741-4) contains supplementary material, which is available to authorized users.

摘要

基于分子连接性指数的定量结构-保留关系(QSRR)方法,可用于预测132种挥发性有机化合物(VOCs)在130°C下于12种不同(4种非极性和8种极性)固定相(C(67)、C(103)、C(78)、C(∞)、POH、TTF、MTF、PCL、PBR、TMO、PSH和PCN)上的气相色谱法的科瓦茨相对保留指数(GC-RRIs)。基于奥斯汀模型1半经验分子轨道方法进行了全几何优化。通过DRAGON程序直接从化合物的拓扑结构中得出30个分子描述符集。借助最终变量选择方法,即逐步回归算法的消除选择法,选择了三个最佳描述符来建立QSRR模型,以预测有机化合物在各固定相上的RRI,相关系数在0.9378至0.9673之间,留一法交叉验证相关系数在0.9325至0.9653之间。在12种不同固定相上的均方根误差在0.0333 - 0.0458范围内。此外,使用Y-随机化程序、通过奇偶划分进行外部验证以及将整个数据集划分为训练集和测试集来确认所有开发模型的准确性。通过QSRR成功解释了VOCs的GC RRIs与化学结构之间的复杂关系。模型中的三个连接性指数也得到了合理的解释,这表明所有有机化合物的RRI都能由分子连接性指数精确表示。电子补充材料:本文的在线版本(doi:10.1365/s10337 - 010 - 1741 - 4)包含补充材料,授权用户可获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede8/2965364/2e71a681a8a3/10337_2010_1741_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验