Suppr超能文献

定量结构-(色谱)保留关系

Quantitative structure-(chromatographic) retention relationships.

作者信息

Héberger Károly

机构信息

Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary.

出版信息

J Chromatogr A. 2007 Jul 27;1158(1-2):273-305. doi: 10.1016/j.chroma.2007.03.108. Epub 2007 Mar 31.

Abstract

Since the pioneering works of Kaliszan (R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Wiley, New York, 1987; and R. Kaliszan, Structure and Retention in Chromatography. A Chemometric Approach, Harwood Academic, Amsterdam, 1997) no comprehensive summary is available in the field. Present review covers the period of 1996-August 2006. The sources are grouped according to the special properties of kinds of chromatography: Quantitative structure-retention relationship in gas chromatography, in planar chromatography, in column liquid chromatography, in micellar liquid chromatography, affinity chromatography and quantitative structure enantioselective retention relationships. General tendencies, misleading practice and conclusions, validation of the models, suggestions for future works are summarized for each sub-field. Some straightforward applications are emphasized but standard ones. The sources and the model compounds, descriptors, predicted retention data, modeling methods and indicators of their performance, validation of models, and stationary phases are collected in the tables. Some important conclusions are: Not all physicochemical descriptors correlate with the retention data strongly; the heat of formation is not related to the chromatographic retention. It is not appropriate to give the errors of Kovats indices in percentages. The apparently low values (1-3%) can disorient the reviewers and readers. Contemporary mean interlaboratory reproducibility of Kovats indices are about 5-10 i.u. for standard non polar phases and 10-25 i.u. for standard polar phases. The predictive performance of QSRR models deteriorates as the polarity of GC stationary phase increases. The correlation coefficient alone is not a particularly good indicator for the model performance. Residuals are more useful than plots of measured and calculated values. There is no need to give the retention data in a form of an equation if the numbers of compounds are small. The domain of model applicability of models should be given in all cases.

摘要

自卡利山的开创性著作(R. 卡利山,《定量结构 - 色谱保留关系》,威利出版社,纽约,1987年;以及R. 卡利山,《色谱中的结构与保留:化学计量学方法》,哈伍德学术出版社,阿姆斯特丹,1997年)问世以来,该领域尚无全面的综述。本综述涵盖1996年至2006年8月这一时期。资料来源根据各类色谱的特殊性质进行分类:气相色谱中的定量结构 - 保留关系、平面色谱中的定量结构 - 保留关系、柱液相色谱中的定量结构 - 保留关系、胶束液相色谱中的定量结构 - 保留关系、亲和色谱中的定量结构 - 保留关系以及定量结构对映体选择性保留关系。针对每个子领域总结了总体趋势、误导性做法与结论、模型验证、对未来工作的建议。强调了一些直接的应用,但均为标准应用。表格中收集了资料来源、模型化合物、描述符、预测保留数据、建模方法及其性能指标、模型验证以及固定相。一些重要结论如下:并非所有物理化学描述符都与保留数据有强烈的相关性;生成热与色谱保留无关。以百分比形式给出科瓦茨指数的误差是不合适的。明显较低的值(1 - 3%)可能会使评审人员和读者产生误解。对于标准非极性固定相,科瓦茨指数目前的实验室间平均重现性约为5 - 10国际单位,对于标准极性固定相则为10 - 25国际单位。随着气相色谱固定相极性的增加,定量结构 - 保留关系(QSRR)模型的预测性能会变差。仅相关系数并非模型性能的特别好的指标。残差比测量值与计算值的图表更有用。如果化合物数量较少,则无需以方程形式给出保留数据。在所有情况下都应给出模型的适用范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验