Suppr超能文献

高通量跟踪微流控成像矩阵中的单个酵母细胞。

High-throughput tracking of single yeast cells in a microfluidic imaging matrix.

机构信息

University of British Columbia, Center for High-Throughput Biology, 2185 East Mall, Vancouver, BC, Canada V6T-1Z4.

出版信息

Lab Chip. 2011 Feb 7;11(3):466-73. doi: 10.1039/c0lc00228c. Epub 2010 Nov 18.

Abstract

Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughput, and precise chemical control. This is particularly problematic for system-level studies using non-adherent model organisms such as yeast, where the motion of cells complicates tracking and where large-scale analysis under a variety of genetic and chemical perturbations is desired. We present here a high-throughput microfluidic imaging system capable of tracking single cells over multiple generations in 128 simultaneous experiments with programmable and precise chemical control. High-resolution imaging and robust cell tracking are achieved through immobilization of yeast cells using a combination of mechanical clamping and polymerization in an agarose gel. The channel and valve architecture of our device allows for the formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent imaging experiment with fully programmable medium exchange via diffusion. We demonstrate our system in the combinatorial and quantitative analysis of the yeast pheromone signaling response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute to observed variability at stimulation conditions near the critical threshold for cellular decision making.

摘要

延时活细胞成像技术是研究信号转导网络动态和复杂性的有力工具,特别适合于单细胞研究响应动力学、噪声和可遗传性差异。尽管传统的成像格式具有进行此类研究所需的时间和空间分辨率,但它们不能同时提供细胞跟踪、实验通量和精确化学控制的优势。对于使用非贴壁模式生物(如酵母)进行系统水平研究,这尤其成问题,因为细胞的运动使跟踪变得复杂,并且需要在各种遗传和化学干扰下进行大规模分析。我们在这里提出了一种高通量微流控成像系统,该系统能够在 128 个同时进行的实验中对单个细胞进行多次传代跟踪,具有可编程和精确的化学控制功能。通过使用机械夹紧和琼脂糖凝胶中的聚合作用相结合将酵母细胞固定,实现了高分辨率成像和稳健的细胞跟踪。我们的设备的通道和阀结构允许形成 128 个集成琼脂糖凝胶垫的矩阵,每个垫都可以通过扩散进行完全可编程的介质交换,从而进行独立的成像实验。我们在组合和定量分析酵母信息素信号反应的 8 种基因型和 16 种条件方面展示了我们的系统,并表明谱系依赖性效应导致在接近细胞决策的关键阈值的刺激条件下观察到的可变性。

相似文献

3
High-throughput analysis of yeast replicative aging using a microfluidic system.使用微流控系统对酵母复制性衰老进行高通量分析。
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9364-9. doi: 10.1073/pnas.1510328112. Epub 2015 Jul 13.

引用本文的文献

7
Using time-lapse fluorescence microscopy to study gene regulation.使用延时荧光显微镜研究基因调控。
Methods. 2019 Apr 15;159-160:138-145. doi: 10.1016/j.ymeth.2018.12.010. Epub 2018 Dec 29.
9
Microfluidic Platforms for Yeast-Based Aging Studies.用于基于酵母的衰老研究的微流控平台
Small. 2016 Nov;12(42):5787-5801. doi: 10.1002/smll.201602006. Epub 2016 Sep 26.
10
High-throughput analysis of yeast replicative aging using a microfluidic system.使用微流控系统对酵母复制性衰老进行高通量分析。
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9364-9. doi: 10.1073/pnas.1510328112. Epub 2015 Jul 13.

本文引用的文献

1
Functional roles for noise in genetic circuits.遗传回路中噪声的功能作用。
Nature. 2010 Sep 9;467(7312):167-73. doi: 10.1038/nature09326.
4
Tracking lineages of single cells in lines using a microfluidic device.使用微流控装置追踪细胞系中的单细胞谱系。
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18149-54. doi: 10.1073/pnas.0903163106. Epub 2009 Oct 13.
6
Quantitative time-lapse fluorescence microscopy in single cells.单细胞定量延时荧光显微镜技术。
Annu Rev Cell Dev Biol. 2009;25:301-27. doi: 10.1146/annurev.cellbio.042308.113408.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验