University of British Columbia, Center for High-Throughput Biology, 2185 East Mall, Vancouver, BC, Canada V6T-1Z4.
Lab Chip. 2011 Feb 7;11(3):466-73. doi: 10.1039/c0lc00228c. Epub 2010 Nov 18.
Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughput, and precise chemical control. This is particularly problematic for system-level studies using non-adherent model organisms such as yeast, where the motion of cells complicates tracking and where large-scale analysis under a variety of genetic and chemical perturbations is desired. We present here a high-throughput microfluidic imaging system capable of tracking single cells over multiple generations in 128 simultaneous experiments with programmable and precise chemical control. High-resolution imaging and robust cell tracking are achieved through immobilization of yeast cells using a combination of mechanical clamping and polymerization in an agarose gel. The channel and valve architecture of our device allows for the formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent imaging experiment with fully programmable medium exchange via diffusion. We demonstrate our system in the combinatorial and quantitative analysis of the yeast pheromone signaling response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute to observed variability at stimulation conditions near the critical threshold for cellular decision making.
延时活细胞成像技术是研究信号转导网络动态和复杂性的有力工具,特别适合于单细胞研究响应动力学、噪声和可遗传性差异。尽管传统的成像格式具有进行此类研究所需的时间和空间分辨率,但它们不能同时提供细胞跟踪、实验通量和精确化学控制的优势。对于使用非贴壁模式生物(如酵母)进行系统水平研究,这尤其成问题,因为细胞的运动使跟踪变得复杂,并且需要在各种遗传和化学干扰下进行大规模分析。我们在这里提出了一种高通量微流控成像系统,该系统能够在 128 个同时进行的实验中对单个细胞进行多次传代跟踪,具有可编程和精确的化学控制功能。通过使用机械夹紧和琼脂糖凝胶中的聚合作用相结合将酵母细胞固定,实现了高分辨率成像和稳健的细胞跟踪。我们的设备的通道和阀结构允许形成 128 个集成琼脂糖凝胶垫的矩阵,每个垫都可以通过扩散进行完全可编程的介质交换,从而进行独立的成像实验。我们在组合和定量分析酵母信息素信号反应的 8 种基因型和 16 种条件方面展示了我们的系统,并表明谱系依赖性效应导致在接近细胞决策的关键阈值的刺激条件下观察到的可变性。