文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高通量方法在生物材料和材料生物学的发现和研究中的应用。

High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology.

机构信息

University of Groningen, W. J. Kolff Institute for Biomedical Engineering and Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

出版信息

Chem Rev. 2021 Apr 28;121(8):4561-4677. doi: 10.1021/acs.chemrev.0c00752. Epub 2021 Mar 11.


DOI:10.1021/acs.chemrev.0c00752
PMID:33705116
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8154331/
Abstract

The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.

摘要

细胞与生物材料的复杂相互作用(即材料生物学)在新型植入物、生物医学设备和组织工程支架的开发中起着越来越关键的作用,可用于治疗疾病、辅助恢复身体功能、构建健康组织或再生病变组织。然而,传统方法无法筛选大量潜在的材料参数组合来确定最佳的细胞反应,并且涉及到偶然性和许多系列的反复试验的组合。对于先进的组织工程和再生医学,需要高效复杂的生物分析平台来探索细胞与生物材料的复杂相互作用,采用组合方法在治疗、发育和体内平衡期间提供所需的复杂微环境。在这篇综述中,我们首先介绍了材料生物学及其高通量筛选(HTS)。然后,我们深入介绍了 2D/3D HTS 平台(即梯度和微阵列)在原理、制备、材料生物学筛选以及与其他先进技术结合方面的最新进展。强调了生物材料转录组学和高内涵成像的纲要,以及计算模拟及其向商业和临床应用的转化。在最后一节中,讨论了当前的挑战和未来的展望。材料生物学领域的高通量实验能够阐明生物材料特性与生物行为之间的关系,因此可作为加速高性能生物材料开发的潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/9e7e367bff96/cr0c00752_0044.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/95160125fdf2/cr0c00752_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/1d093099a76e/cr0c00752_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/854ef1b60494/cr0c00752_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/c8cede73efa6/cr0c00752_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/09e97283419c/cr0c00752_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/a98938010233/cr0c00752_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/e6e8bb660eb3/cr0c00752_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3aab4470ace2/cr0c00752_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/6512cb5bb111/cr0c00752_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3299106991eb/cr0c00752_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/ccdabbe015a2/cr0c00752_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/869426a50216/cr0c00752_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/a3d35a881c70/cr0c00752_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/dbbd6a042992/cr0c00752_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/009a443c5f10/cr0c00752_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/802f4a840a14/cr0c00752_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/72e44c627104/cr0c00752_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/850e23ae1c1b/cr0c00752_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/f8ea6b1daaa5/cr0c00752_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/ebd4e4a38a50/cr0c00752_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b4383dc51ec3/cr0c00752_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d85aac32d1ba/cr0c00752_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5c7c149ff024/cr0c00752_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/1f1fe4e6e945/cr0c00752_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/2d19055afe55/cr0c00752_0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3506e4dc0ed6/cr0c00752_0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d48357e68bf5/cr0c00752_0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/43003f8c71a0/cr0c00752_0029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/7c648a488908/cr0c00752_0030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b98cd0a0d982/cr0c00752_0031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/036f0ba6219f/cr0c00752_0032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/91c0a890f029/cr0c00752_0033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/37feb197cd16/cr0c00752_0034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5cd50e7d8915/cr0c00752_0035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d570e2f49fc0/cr0c00752_0036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/892400465dd4/cr0c00752_0037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/453748bf8555/cr0c00752_0038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5d77e8ab63f1/cr0c00752_0039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/31b68282bdad/cr0c00752_0040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b4a63afd4ded/cr0c00752_0041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/74e2268bdff2/cr0c00752_0042.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/7354511244c5/cr0c00752_0043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/9e7e367bff96/cr0c00752_0044.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/95160125fdf2/cr0c00752_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/1d093099a76e/cr0c00752_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/854ef1b60494/cr0c00752_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/c8cede73efa6/cr0c00752_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/09e97283419c/cr0c00752_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/a98938010233/cr0c00752_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/e6e8bb660eb3/cr0c00752_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3aab4470ace2/cr0c00752_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/6512cb5bb111/cr0c00752_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3299106991eb/cr0c00752_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/ccdabbe015a2/cr0c00752_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/869426a50216/cr0c00752_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/a3d35a881c70/cr0c00752_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/dbbd6a042992/cr0c00752_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/009a443c5f10/cr0c00752_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/802f4a840a14/cr0c00752_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/72e44c627104/cr0c00752_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/850e23ae1c1b/cr0c00752_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/f8ea6b1daaa5/cr0c00752_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/ebd4e4a38a50/cr0c00752_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b4383dc51ec3/cr0c00752_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d85aac32d1ba/cr0c00752_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5c7c149ff024/cr0c00752_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/1f1fe4e6e945/cr0c00752_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/2d19055afe55/cr0c00752_0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/3506e4dc0ed6/cr0c00752_0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d48357e68bf5/cr0c00752_0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/43003f8c71a0/cr0c00752_0029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/7c648a488908/cr0c00752_0030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b98cd0a0d982/cr0c00752_0031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/036f0ba6219f/cr0c00752_0032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/91c0a890f029/cr0c00752_0033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/37feb197cd16/cr0c00752_0034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5cd50e7d8915/cr0c00752_0035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/d570e2f49fc0/cr0c00752_0036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/892400465dd4/cr0c00752_0037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/453748bf8555/cr0c00752_0038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/5d77e8ab63f1/cr0c00752_0039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/31b68282bdad/cr0c00752_0040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/b4a63afd4ded/cr0c00752_0041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/74e2268bdff2/cr0c00752_0042.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/7354511244c5/cr0c00752_0043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b4/8154331/9e7e367bff96/cr0c00752_0044.jpg

相似文献

[1]
High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology.

Chem Rev. 2021-4-28

[2]
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.

Acta Biomater. 2016-4-1

[3]
Recent Advances in High-throughput Platforms with Engineered Biomaterial Microarrays for Screening of Cell and Tissue Behavior.

Curr Pharm Des. 2018

[4]
Evolving biomaterials design from trial and error to intelligent innovation.

Acta Biomater. 2025-5-1

[5]
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

Acta Biomater. 2016-4-1

[6]
Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal.

Biomaterials. 2010-6-16

[7]
High-throughput approaches for screening and analysis of cell behaviors.

Biomaterials. 2017-6-21

[8]
The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering.

Chem Rev. 2017-2-21

[9]
Omics technologies for high-throughput-screening of cell-biomaterial interactions.

Mol Omics. 2022-8-15

[10]
Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment.

Acta Biomater. 2016-4-1

引用本文的文献

[1]
Evaluating Biocompatibility: From Classical Techniques to State-of-the-Art Functional Proteomics.

Nanomaterials (Basel). 2025-7-3

[2]
High-Throughput Analysis of Protein Adsorption to a Large Library of Polymers Using Liquid Extraction Surface Analysis-Tandem Mass Spectrometry (LESA-MS/MS).

Anal Chem. 2025-6-24

[3]
Multi-enzymatic biomimetic cerium-based MOFs mediated precision chemodynamic synergistic antibacteria and tissue repair for MRSA-infected wounds.

J Nanobiotechnology. 2025-5-20

[4]
Harnessing the power of physicochemical material property screening to direct breast epithelial and breast cancer cells.

Bioact Mater. 2025-4-26

[5]
Novel target identification towards drug repurposing based on biological activity profiles.

PLoS One. 2025-5-6

[6]
Double-Orthogonal Gradient-Based High-Throughput Screening Platform for Studying Cell Response Toward Combined Physicochemical Biomaterial Properties.

Small Sci. 2023-11-27

[7]
Bioprinted platform for parallelized screening of engineered microtissues in vivo.

Cell Stem Cell. 2025-5-1

[8]
Dynamic Col-HZ Hydrogel with efficient delivery of bioactivator promotes ECM deposition and cartilage formation.

Mater Today Bio. 2025-2-28

[9]
Construction and high-throughput screening of gradient nanowire coatings on titanium surface towards ameliorated osseointegration.

Mater Today Bio. 2024-12-7

[10]
Modulation of Biomaterial-Associated Fibrosis by Means of Combined Physicochemical Material Properties.

Adv Sci (Weinh). 2025-1

本文引用的文献

[1]
Capturing Single-Cell Phenotypic Variation via Unsupervised Representation Learning.

Proc Mach Learn Res. 2019-7

[2]
A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients.

Langmuir. 2003-12-9

[3]
Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude.

ACS Appl Bio Mater. 2020-4-20

[4]
Decoupling the Amplitude and Wavelength of Anisotropic Topography and the Influence on Osteogenic Differentiation of Mesenchymal Stem Cells Using a High-Throughput Screening Approach.

ACS Appl Bio Mater. 2020-6-15

[5]
Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip.

Biomaterials. 2021-4

[6]
Shifting Gears in Biomaterials Discovery.

Matter. 2020-6-3

[7]
High-Throughput Screening of Rat Mesenchymal Stem Cell Behavior on Gradient TiO Nanotubes.

ACS Biomater Sci Eng. 2018-8-13

[8]
Intestine-on-a-Chip Microfluidic Model for Efficient in Vitro Screening of Oral Chemotherapeutic Uptake.

ACS Biomater Sci Eng. 2017-6-12

[9]
TopoWellPlate: A Well-Plate-Based Screening Platform to Study Cell-Surface Topography Interactions.

Adv Biosyst. 2017-4

[10]
Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation.

Adv Sci (Weinh). 2020-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索