Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain.
Inorg Chem. 2010 Dec 20;49(24):11346-61. doi: 10.1021/ic100928t. Epub 2010 Nov 19.
We report herein the synthesis and physicochemical characterization of eight new manganese-oxalato compounds with 1,2-bis(4-pyridyl)ethylene (bpe): {(Hbpe)(2)[Mn(2)(μ-ox)(3)]·∼0.8(C(2)H(5)OH)·∼0.4(H(2)O)}(n) (1), {[Mn(μ-ox)(μ-bpe)]·xH(2)O}(n) (2), Mn(2)(μ-ox)(2)(μ-bpe)(bpe)(2) (3), Mn(μ-ox)(μ-bpe) (4a and 4b), and {[Mn(4)(μ-ox)(3)(μ-bpe)(4)(H(2)O)(4)]·(X)(2)·mY}(n) with X = NO(3)(-) (5a), Br(-) (5b), and ClO(4)(-) (5c) and Y = solvation molecules. The appropriate selection of the synthetic conditions allowed us to control the crystal structure and to design extended 2D and 3D frameworks. Compound 1 is obtained at acid pH values and its crystal structure consists of stacked Mn(2)(μ-ox)(3) layers with cationic Hbpe(+) molecules intercalated among them. Compound 2 was obtained at basic pH values with a manganese/bpe ratio of 1:1, and the resulting 3D structure consists of an interpenetrating framework in which metal-oxalato chains are bridged by bpe ligands, leading to a microporous network that hosts a variable number of water molecules (between 0 and 1) depending on the synthetic conditions. Compound 3, synthesized with a manganese/bpe ratio of 1:3, shows a 2D framework in which linear metal-oxalato chains are joined by bis-monodentate 1,2-bis(4-pyridyl)ethylene ligands. The thermal treatment of compound 3 permits the release of one of the bpe molecules, giving rise to two new 2D crystalline phases of formula Mn(μ-ox)(μ-bpe) (4a and 4b) depending on the heating rate. The open structures of 5a-5c were synthesized in a medium with a high concentration of nitrate, perchlorate, or bromide salts (potassium or sodium as cations). These anions behave as templating agents directing the crystal growing toward a cationic porous network, in which the anions placed in the voids and channels of the structure present high mobility, as inferred from the ionic exchange experiments. Variable-temperature magnetic susceptibility measurements show an overall antiferromagnetic behavior for all compounds, which are discussed in detail.
我们在此报告了八种新的锰草酸盐化合物的合成和物理化学特性,这些化合物与 1,2-双(4-吡啶基)乙烯(bpe)有关:{(Hbpe)(2)[Mn(2)(μ-ox)(3)]·∼0.8(C(2)H(5)OH)·∼0.4(H(2)O)}(n) (1)、{[Mn(μ-ox)(μ-bpe)]·xH(2)O}(n) (2)、Mn(2)(μ-ox)(2)(μ-bpe)(bpe)(2) (3)、Mn(μ-ox)(μ-bpe) (4a 和 4b),以及{[Mn(4)(μ-ox)(3)(μ-bpe)(4)(H(2)O)(4)]·(X)(2)·mY}(n),其中 X = NO(3)(-) (5a)、Br(-) (5b) 和 ClO(4)(-) (5c),Y = 溶剂分子。适当选择合成条件可以控制晶体结构并设计扩展的 2D 和 3D 结构。化合物 1 在酸性 pH 值下获得,其晶体结构由堆叠的Mn(2)(μ-ox)(3)层组成,其中阳离子 Hbpe(+)分子插在它们之间。化合物 2 在碱性 pH 值下获得,锰/ bpe 比为 1:1,所得的 3D 结构由互穿骨架组成,其中金属草酸盐链由 bpe 配体桥接,形成微孔网络,根据合成条件,可容纳数量可变的水分子(0 到 1 个)。化合物 3 以锰/ bpe 比为 1:3 合成,显示出 2D 骨架,其中线性金属草酸盐链由双单齿 1,2-双(4-吡啶基)乙烯配体连接。化合物 3 的热处理允许释放一个 bpe 分子,导致形成两个新的 2D 结晶相,其化学式为Mn(μ-ox)(μ-bpe) (4a 和 4b),这取决于加热速率。5a-5c 的开放结构是在高浓度硝酸盐、高氯酸根或溴化物盐(钾或钠作为阳离子)的介质中合成的。这些阴离子作为模板剂,指导晶体生长到一个阳离子多孔网络中,其中阴离子放置在结构的空隙和通道中具有高迁移率,这可以从离子交换实验中推断出来。变温磁化率测量表明所有化合物都表现出整体反铁磁行为,对此进行了详细讨论。