Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
J Chem Phys. 2010 Nov 21;133(19):194104. doi: 10.1063/1.3503765.
Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.
最近,我们提出了一种在线性响应含时密度泛函理论中使用一组辅助多电子波函数计算非绝热耦合和非绝热耦合矢量的方案[I. Tavernelli, E. Tapavicza 和 U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]。正如在后来的一项工作中所证明的那样[I. Tavernelli, B. F. E. Curchod 和 U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)],在计算基态和任何激发态之间的非绝热耦合时,这种方法是严格的。在这项工作中,我们将这种形式主义扩展到具有相同自旋多重性的单激发态对之间的耦合情况。在用 Mukamel 等人的电子振荡器方法证明了我们的形式主义的正确性之后[S. Tretiak 和 S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)],我们在一个模型系统上测试了该方法,即质子化甲醛亚胺,我们计算了 S(1)/S(2)非绝热耦合矢量,并将其与高水准(MR-CISD)电子结构计算的结果进行了比较。