Chair of Theoretical Chemistry, Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 München , Germany.
Max Planck Institute for Solid State Research , Heisenbergstr. 1 , D-70569 Stuttgart , Germany.
J Chem Theory Comput. 2019 Dec 10;15(12):6647-6659. doi: 10.1021/acs.jctc.9b00859. Epub 2019 Nov 25.
Nonadiabatic molecular dynamics (NAMD) simulations of molecular systems require the efficient evaluation of excited-state properties, such as energies, gradients, and nonadiabatic coupling vectors. Here, we investigate the use of graphics processing units (GPUs) in addition to central processing units (CPUs) to efficiently calculate these properties at the time-dependent density functional theory (TDDFT) level of theory. Our implementation in the FermiONs++ program package uses the J-engine and a preselective screening procedure for the calculation of Coulomb and exchange kernels, respectively. We observe good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced (down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven rotary molecular motors and compare their S lifetimes. Although all four rotors show different S excitation energies, their ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with tunable excitation energies.
非绝热分子动力学(NAMD)模拟分子体系需要有效地评估激发态性质,如能量、梯度和非绝热耦合向量。在这里,我们研究了在除中央处理器(CPU)之外还使用图形处理单元(GPU)来有效地在含时密度泛函理论(TDDFT)水平上计算这些性质。我们在 FermiONs++程序包中的实现分别使用 J 引擎和预选择筛选程序来计算库仑和交换核。我们观察到对于小和大的分子体系(与基态计算中观察到的相似)都有很好的加速效果,并且对于体系大小的缩放行为(取决于所研究的激发的空间局部性)降低(达到次线性)。作为第一个说明性应用,我们展示了一系列新设计的光驱动旋转分子马达的高效 NAMD 模拟,并比较了它们的 S 寿命。尽管所有四个转子都显示出不同的 S 激发能量,但它们在激发时旋转的能力得以保留,这使得该系列成为具有可调激发能量的旋转分子马达的有趣起点。