Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
Risk Anal. 2011 Mar;31(3):370-81. doi: 10.1111/j.1539-6924.2010.01520.x. Epub 2010 Nov 22.
Distributions of pathogen counts in treated water over time are highly skewed, power-law-like, and discrete. Over long periods of record, a long tail is observed, which can strongly determine the long-term mean pathogen count and associated health effects. Such distributions have been modeled with the Poisson lognormal (PLN) computed (not closed-form) distribution, and a new discrete growth distribution (DGD), also computed, recently proposed and demonstrated for microbial counts in water (Risk Analysis 29, 841-856). In this article, an error in the original theoretical development of the DGD is pointed out, and the approach is shown to support the closed-form discrete Weibull (DW). Furthermore, an information-theoretic derivation of the DGD is presented, explaining the fit shown for it to the original nine empirical and three simulated (n = 1,000) long-term waterborne microbial count data sets. Both developments result from a theory of multiplicative growth of outcome size from correlated, entropy-forced cause magnitudes. The predicted DW and DGD are first borne out in simulations of continuous and discrete correlated growth processes, respectively. Then the DW and DGD are each demonstrated to fit 10 of the original 12 data sets, passing the chi-square goodness-of-fit test (α= 0.05, overall p = 0.1184). The PLN was not demonstrated, fitting only 4 of 12 data sets (p = 1.6 × 10(-8) ), explained by cause magnitude correlation. Results bear out predictions of monotonically decreasing distributions, and suggest use of the DW for inhomogeneous counts correlated in time or space. A formula for computing the DW mean is presented.
经处理水中病原体数量的时间分布高度偏态,呈幂律分布且离散。在长时间记录中,观察到长尾,这可能会强烈影响长期平均病原体数量和相关健康影响。已经使用泊松对数正态(PLN)计算(非闭式)分布和新的离散增长分布(DGD)对这些分布进行建模,该模型最近被提出并用于水中微生物计数(风险分析 29,841-856)。本文指出了 DGD 原始理论发展中的一个错误,并表明该方法支持闭式离散 Weibull(DW)。此外,还提出了 DGD 的信息论推导,解释了其对原始的九个经验和三个模拟(n=1000)长期水传微生物计数数据集的拟合。这两个发展都源自因果大小的相关、熵驱动的乘积生长理论。DW 和 DGD 分别在连续和离散相关生长过程的模拟中得到验证。然后,DW 和 DGD 分别被证明适用于原始 12 个数据集的 10 个,通过卡方拟合优度检验(α=0.05,总体 p=0.1184)。PLN 未被证明,仅适用于 12 个数据集中的 4 个(p=1.6×10(-8)),这可以用因果大小的相关性来解释。结果证实了单调递减分布的预测,并建议使用 DW 处理时间或空间上相关的非均匀计数。还提出了计算 DW 均值的公式。