Suppr超能文献

一种用于水中微生物计数验证的新型理论离散生长分布。

A new theoretical discrete growth distribution with verification for microbial counts in water.

作者信息

Englehardt James, Swartout Jeff, Loewenstine Chad

出版信息

Risk Anal. 2009 Jun;29(6):841-56. doi: 10.1111/j.1539-6924.2008.01194.x. Epub 2009 Jan 31.

Abstract

Living microbes are discrete, not homogeneously distributed in environmental media, and the form of the distribution of their counts in drinking water has not been well established. However, this count may "scale" or range over orders of magnitude over time, in which case data representing the tail of the distribution, and governing the mean, would be represented only in impractically long data records. In the absence of such data, knowledge of the general form of the full distribution could be used to estimate the true mean accounting for low-probability, high-consequence count events and provide a basis for a general environmental dose-response function. In this article, a new theoretical discrete growth distribution (DGD) is proposed for discrete counts in environmental media and other discrete growth systems. The term growth refers not to microbial growth but to a general abiotic first-order growth/decay of outcome sizes in many complex systems. The emergence and stability of the DGD in such systems, defined in simultaneous work, are also described. The DGD is then initially verified versus 12 of 12 simulated long-term drinking water and short-term treated and untreated water microbial count data sets. The alternative Poisson lognormal (PLN) distribution was rejected for 2 (17%) of the 12 data sets with 95% confidence and, like other competitive distributions, was not found stable (in simultaneous work). Sample averages are compared with means assessed from the fitted DGD, with varying results. Broader validation of the DGD for discrete counts arising as outcomes of mathematical growth systems is suggested.

摘要

活微生物是离散的,在环境介质中并非均匀分布,其在饮用水中的数量分布形式尚未得到很好的确立。然而,这种数量可能会随时间“缩放”或在几个数量级范围内变化,在这种情况下,代表分布尾部并控制均值的数据仅会出现在不切实际的长数据记录中。在缺乏此类数据的情况下,对完整分布一般形式的了解可用于估计考虑低概率、高后果数量事件的真实均值,并为一般环境剂量反应函数提供基础。在本文中,针对环境介质和其他离散生长系统中的离散数量,提出了一种新的理论离散生长分布(DGD)。这里的“生长”并非指微生物生长,而是指许多复杂系统中结果大小的一般非生物一级生长/衰减。同时还描述了在这类系统中DGD的出现和稳定性。然后,首先针对12个模拟的长期饮用水以及短期处理和未处理水的微生物数量数据集对DGD进行了验证。在95%的置信水平下,12个数据集中有2个(17%)拒绝了替代泊松对数正态(PLN)分布,并且与其他竞争分布一样,未发现其稳定(在同时进行的研究中)。将样本平均值与根据拟合的DGD评估的均值进行了比较,结果各异。建议对作为数学生长系统结果出现的离散数量的DGD进行更广泛的验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验