Genomatica, Inc., 10520 Wateridge Circle, San Diego, CA 92121, USA.
Microb Cell Fact. 2010 Nov 22;9:90. doi: 10.1186/1475-2859-9-90.
Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via (13)C-based metabolic flux analysis. We examined the (13)C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with (13)C-acetate.
Using (13)C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle.
We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using (13)C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.
脱硫弧菌能够将有机化合物的完全氧化与铁还原相偶联。通过基于 13C 的代谢通量分析,研究了 G. sulfurreducens 对电子供体(乙酸盐、氢)和受体(Fe(III)、延胡索酸盐)变化的代谢反应。我们检查了 G. sulfurreducens 在培养过程中使用 13C-乙酸盐获得的蛋白氨基酸的 13C 标记模式。
使用基于 13C 的代谢通量分析,我们观察到供体和受体的变化导致了糖异生起始、三羧酸循环活性和氨基酸生物合成途径的差异。当 Fe(III)作为电子受体和乙酸盐作为电子供体培养 G. sulfurreducens 细胞时,丙酮酸成为糖异生的主要碳源。当延胡索酸盐作为电子受体和乙酸盐作为电子供体时,通量分析表明延胡索酸盐既作为电子受体,又与乙酸盐一起作为碳源。在延胡索酸盐和乙酸盐上生长导致磷酸烯醇丙酮酸羧激酶启动糖异生,与 Fe(III)作为电子受体相比,通过氧化三羧酸循环的通量略有增加。此外,与在 Fe(III)存在下生长相比,在延胡索酸盐存在下生长时,乙酰辅酶 A 和丙酮酸之间的净通量方向发生逆转,而在存在 Fe(III)和作为电子供体提供氢的乙酸盐的情况下,三羧酸循环的通量减少。
我们使用基于 13C 的代谢通量分析,深入了解了各种电子供体/受体条件下 G. sulfurreducens 细胞的代谢情况。我们的结果可用于开发 G. sulfurreducens 作为底盘,用于各种应用,包括生物修复和可再生生物燃料生产。